678 research outputs found

    Novel Bidirectional Body - Machine Interface to Control Upper Limb Prosthesis

    Get PDF
    Objective. The journey of a bionic prosthetic user is characterized by the opportunities and limitations involved in adopting a device (the prosthesis) that should enable activities of daily living (ADL). Within this context, experiencing a bionic hand as a functional (and, possibly, embodied) limb constitutes the premise for mitigating the risk of its abandonment through the continuous use of the device. To achieve such a result, different aspects must be considered for making the artificial limb an effective support for carrying out ADLs. Among them, intuitive and robust control is fundamental to improving amputees’ quality of life using upper limb prostheses. Still, as artificial proprioception is essential to perceive the prosthesis movement without constant visual attention, a good control framework may not be enough to restore practical functionality to the limb. To overcome this, bidirectional communication between the user and the prosthesis has been recently introduced and is a requirement of utmost importance in developing prosthetic hands. Indeed, closing the control loop between the user and a prosthesis by providing artificial sensory feedback is a fundamental step towards the complete restoration of the lost sensory-motor functions. Within my PhD work, I proposed the development of a more controllable and sensitive human-like hand prosthesis, i.e., the Hannes prosthetic hand, to improve its usability and effectiveness. Approach. To achieve the objectives of this thesis work, I developed a modular and scalable software and firmware architecture to control the Hannes prosthetic multi-Degree of Freedom (DoF) system and to fit all users’ needs (hand aperture, wrist rotation, and wrist flexion in different combinations). On top of this, I developed several Pattern Recognition (PR) algorithms to translate electromyographic (EMG) activity into complex movements. However, stability and repeatability were still unmet requirements in multi-DoF upper limb systems; hence, I started by investigating different strategies to produce a more robust control. To do this, EMG signals were collected from trans-radial amputees using an array of up to six sensors placed over the skin. Secondly, I developed a vibrotactile system to implement haptic feedback to restore proprioception and create a bidirectional connection between the user and the prosthesis. Similarly, I implemented an object stiffness detection to restore tactile sensation able to connect the user with the external word. This closed-loop control between EMG and vibration feedback is essential to implementing a Bidirectional Body - Machine Interface to impact amputees’ daily life strongly. For each of these three activities: (i) implementation of robust pattern recognition control algorithms, (ii) restoration of proprioception, and (iii) restoration of the feeling of the grasped object's stiffness, I performed a study where data from healthy subjects and amputees was collected, in order to demonstrate the efficacy and usability of my implementations. In each study, I evaluated both the algorithms and the subjects’ ability to use the prosthesis by means of the F1Score parameter (offline) and the Target Achievement Control test-TAC (online). With this test, I analyzed the error rate, path efficiency, and time efficiency in completing different tasks. Main results. Among the several tested methods for Pattern Recognition, the Non-Linear Logistic Regression (NLR) resulted to be the best algorithm in terms of F1Score (99%, robustness), whereas the minimum number of electrodes needed for its functioning was determined to be 4 in the conducted offline analyses. Further, I demonstrated that its low computational burden allowed its implementation and integration on a microcontroller running at a sampling frequency of 300Hz (efficiency). Finally, the online implementation allowed the subject to simultaneously control the Hannes prosthesis DoFs, in a bioinspired and human-like way. In addition, I performed further tests with the same NLR-based control by endowing it with closed-loop proprioceptive feedback. In this scenario, the results achieved during the TAC test obtained an error rate of 15% and a path efficiency of 60% in experiments where no sources of information were available (no visual and no audio feedback). Such results demonstrated an improvement in the controllability of the system with an impact on user experience. Significance. The obtained results confirmed the hypothesis of improving robustness and efficiency of a prosthetic control thanks to of the implemented closed-loop approach. The bidirectional communication between the user and the prosthesis is capable to restore the loss of sensory functionality, with promising implications on direct translation in the clinical practice

    Enhanced Living Environments

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1303 “Algorithms, Architectures and Platforms for Enhanced Living Environments (AAPELE)”. The concept of Enhanced Living Environments (ELE) refers to the area of Ambient Assisted Living (AAL) that is more related with Information and Communication Technologies (ICT). Effective ELE solutions require appropriate ICT algorithms, architectures, platforms, and systems, having in view the advance of science and technology in this area and the development of new and innovative solutions that can provide improvements in the quality of life for people in their homes and can reduce the financial burden on the budgets of the healthcare providers. The aim of this book is to become a state-of-the-art reference, discussing progress made, as well as prompting future directions on theories, practices, standards, and strategies related to the ELE area. The book contains 12 chapters and can serve as a valuable reference for undergraduate students, post-graduate students, educators, faculty members, researchers, engineers, medical doctors, healthcare organizations, insurance companies, and research strategists working in this area

    Improving the mechanistic study of neuromuscular diseases through the development of a fully wireless and implantable recording device

    Get PDF
    Neuromuscular diseases manifest by a handful of known phenotypes affecting the peripheral nerves, skeletal muscle fibers, and neuromuscular junction. Common signs of these diseases include demyelination, myasthenia, atrophy, and aberrant muscle activity—all of which may be tracked over time using one or more electrophysiological markers. Mice, which are the predominant mammalian model for most human diseases, have been used to study congenital neuromuscular diseases for decades. However, our understanding of the mechanisms underlying these pathologies is still incomplete. This is in part due to the lack of instrumentation available to easily collect longitudinal, in vivo electrophysiological activity from mice. There remains a need for a fully wireless, batteryless, and implantable recording system that can be adapted for a variety of electrophysiological measurements and also enable long-term, continuous data collection in very small animals. To meet this need a miniature, chronically implantable device has been developed that is capable of wirelessly coupling energy from electromagnetic fields while implanted within a body. This device can both record and trigger bioelectric events and may be chronically implanted in rodents as small as mice. This grants investigators the ability to continuously observe electrophysiological changes corresponding to disease progression in a single, freely behaving, untethered animal. The fully wireless closed-loop system is an adaptable solution for a range of long-term mechanistic and diagnostic studies in rodent disease models. Its high level of functionality, adjustable parameters, accessible building blocks, reprogrammable firmware, and modular electrode interface offer flexibility that is distinctive among fully implantable recording or stimulating devices. The key significance of this work is that it has generated novel instrumentation in the form of a fully implantable bioelectric recording device having a much higher level of functionality than any other fully wireless system available for mouse work. This has incidentally led to contributions in the areas of wireless power transfer and neural interfaces for upper-limb prosthesis control. Herein the solution space for wireless power transfer is examined including a close inspection of far-field power transfer to implanted bioelectric sensors. Methods of design and characterization for the iterative development of the device are detailed. Furthermore, its performance and utility in remote bioelectric sensing applications is demonstrated with humans, rats, healthy mice, and mouse models for degenerative neuromuscular and motoneuron diseases

    Down-Conditioning of Soleus Reflex Activity using Mechanical Stimuli and EMG Biofeedback

    Get PDF
    Spasticity is a common syndrome caused by various brain and neural injuries, which can severely impair walking ability and functional independence. To improve functional independence, conditioning protocols are available aimed at reducing spasticity by facilitating spinal neuroplasticity. This down-conditioning can be performed using different types of stimuli, electrical or mechanical, and reflex activity measures, EMG or impedance, used as biofeedback variable. Still, current results on effectiveness of these conditioning protocols are incomplete, making comparisons difficult. We aimed to show the within-session task- dependent and across-session long-term adaptation of a conditioning protocol based on mechanical stimuli and EMG biofeedback. However, in contrast to literature, preliminary results show that subjects were unable to successfully obtain task-dependent modulation of their soleus short-latency stretch reflex magnitude

    Distributed Sensing and Stimulation Systems Towards Sense of Touch Restoration in Prosthetics

    Get PDF
    Modern prostheses aim at restoring the functional and aesthetic characteristics of the lost limb. To foster prosthesis embodiment and functionality, it is necessary to restitute both volitional control and sensory feedback. Contemporary feedback interfaces presented in research use few sensors and stimulation units to feedback at most two discrete feedback variables (e.g. grasping force and aperture), whereas the human sense of touch relies on a distributed network of mechanoreceptors providing high-fidelity spatial information. To provide this type of feedback in prosthetics, it is necessary to sense tactile information from artificial skin placed on the prosthesis and transmit tactile feedback above the amputation in order to map the interaction between the prosthesis and the environment. This thesis proposes the integration of distributed sensing systems (e-skin) to acquire tactile sensation, and non-invasive multichannel electrotactile feedback and virtual reality to deliver high-bandwidth information to the user. Its core focus addresses the development and testing of close-loop sensory feedback human-machine interface, based on the latest distributed sensing and stimulation techniques for restoring the sense of touch in prosthetics. To this end, the thesis is comprised of two introductory chapters that describe the state of art in the field, the objectives and the used methodology and contributions; as well as three studies distributed over stimulation system level and sensing system level. The first study presents the development of close-loop compensatory tracking system to evaluate the usability and effectiveness of electrotactile sensory feedback in enabling real-time close-loop control in prosthetics. It examines and compares the subject\u2019s adaptive performance and tolerance to random latencies while performing the dynamic control task (i.e. position control) and simultaneously receiving either visual feedback or electrotactile feedback for communicating the momentary tracking error. Moreover, it reported the minimum time delay needed for an abrupt impairment of users\u2019 performance. The experimental results have shown that electrotactile feedback performance is less prone to changes with longer delays. However, visual feedback drops faster than electrotactile with increased time delays. This is a good indication for the effectiveness of electrotactile feedback in enabling close- loop control in prosthetics, since some delays are inevitable. The second study describes the development of a novel non-invasive compact multichannel interface for electrotactile feedback, containing 24 pads electrode matrix, with fully programmable stimulation unit, that investigates the ability of able-bodied human subjects to localize the electrotactile stimulus delivered through the electrode matrix. Furthermore, it designed a novel dual parameter -modulation (interleaved frequency and intensity) and compared it to conventional stimulation (same frequency for all pads). In addition and for the first time, it compared the electrotactile stimulation to mechanical stimulation. More, it exposes the integration of virtual prosthesis with the developed system in order to achieve better user experience and object manipulation through mapping the acquired real-time collected tactile data and feedback it simultaneously to the user. The experimental results demonstrated that the proposed interleaved coding substantially improved the spatial localization compared to same-frequency stimulation. Furthermore, it showed that same-frequency stimulation was equivalent to mechanical stimulation, whereas the performance with dual-parameter modulation was significantly better. The third study presents the realization of a novel, flexible, screen- printed e-skin based on P(VDF-TrFE) piezoelectric polymers, that would cover the fingertips and the palm of the prosthetic hand (particularly the Michelangelo hand by Ottobock) and an assistive sensorized glove for stroke patients. Moreover, it developed a new validation methodology to examine the sensors behavior while being solicited. The characterization results showed compatibility between the expected (modeled) behavior of the electrical response of each sensor to measured mechanical (normal) force at the skin surface, which in turn proved the combination of both fabrication and assembly processes was successful. This paves the way to define a practical, simplified and reproducible characterization protocol for e-skin patches In conclusion, by adopting innovative methodologies in sensing and stimulation systems, this thesis advances the overall development of close-loop sensory feedback human-machine interface used for restoration of sense of touch in prosthetics. Moreover, this research could lead to high-bandwidth high-fidelity transmission of tactile information for modern dexterous prostheses that could ameliorate the end user experience and facilitate it acceptance in the daily life

    Soft Gloves: A Review on Recent Developments in Actuation, Sensing, Control and Applications

    Get PDF
    Interest in soft gloves, both robotic and haptic, has enormously grown over the past decade, due to their inherent compliance, which makes them particularly suitable for direct interaction with the human hand. Robotic soft gloves have been developed for hand rehabilitation, for ADLs assistance, or sometimes for both. Haptic soft gloves may be applied in virtual reality (VR) applications or to give sensory feedback in combination with prostheses or to control robots. This paper presents an updated review of the state of the art of soft gloves, with a particular focus on actuation, sensing, and control, combined with a detailed analysis of the devices according to their application field. The review is organized on two levels: a prospective review allows the highlighting of the main trends in soft gloves development and applications, and an analytical review performs an in-depth analysis of the technical solutions developed and implemented in the revised scientific research. Additional minor evaluations integrate the analysis, such as a synthetic investigation of the main results in the clinical studies and trials referred in literature which involve soft gloves

    Advance in Energy Harvesters/Nanogenerators and Self-Powered Sensors

    Get PDF
    This reprint is a collection of the Special Issue "Advance in Energy Harvesters/Nanogenerators and Self-Powered Sensors" published in Nanomaterials, which includes one editorial, six novel research articles and four review articles, showcasing the very recent advances in energy-harvesting and self-powered sensing technologies. With its broad coverage of innovations in transducing/sensing mechanisms, material and structural designs, system integration and applications, as well as the timely reviews of the progress in energy harvesting and self-powered sensing technologies, this reprint could give readers an excellent overview of the challenges, opportunities, advancements and development trends of this rapidly evolving field
    • …
    corecore