8,090 research outputs found

    Replica determinism and flexible scheduling in hard real-time dependable systems

    Get PDF
    Fault-tolerant real-time systems are typically based on active replication where replicated entities are required to deliver their outputs in an identical order within a given time interval. Distributed scheduling of replicated tasks, however, violates this requirement if on-line scheduling, preemptive scheduling, or scheduling of dissimilar replicated task sets is employed. This problem of inconsistent task outputs has been solved previously by coordinating the decisions of the local schedulers such that replicated tasks are executed in an identical order. Global coordination results either in an extremely high communication effort to agree on each schedule decision or in an overly restrictive execution model where on-line scheduling, arbitrary preemptions, and nonidentically replicated task sets are not allowed. To overcome these restrictions, a new method, called timed messages, is introduced. Timed messages guarantee deterministic operation by presenting consistent message versions to the replicated tasks. This approach is based on simulated common knowledge and a sparse time base. Timed messages are very effective since they neither require communication between the local scheduler nor do they restrict usage of on-line flexible scheduling, preemptions and nonidentically replicated task sets

    A modular software architecture for UAVs

    Get PDF
    There have been several attempts to create scalable and hardware independent software architectures for Unmanned Aerial Vehicles (UAV). In this work, we propose an onboard architecture for UAVs where hardware abstraction, data storage and communication between modules are efficiently maintained. All processing and software development is done on the UAV while state and mission status of the UAV is monitored from a ground station. The architecture also allows rapid development of mission-specific third party applications on the vehicle with the help of the core module

    In-vehicle communication networks : a literature survey

    Get PDF
    The increasing use of electronic systems in automobiles instead of mechanical and hydraulic parts brings about advantages by decreasing their weight and cost and providing more safety and comfort. There are many electronic systems in modern automobiles like antilock braking system (ABS) and electronic brakeforce distribution (EBD), electronic stability program (ESP) and adaptive cruise control (ACC). Such systems assist the driver by providing better control, more comfort and safety. In addition, future x-by-wire applications aim to replace existing braking, steering and driving systems. The developments in automotive electronics reveal the need for dependable, efficient, high-speed and low cost in-vehicle communication. This report presents the summary of a literature survey on in-vehicle communication networks. Different in-vehicle system domains and their requirements are described and main invehicle communication networks that have been used in automobiles or are likely to be used in the near future are discussed and compared with key references

    Overlay networks for smart grids

    Get PDF

    Controller Area Network

    Get PDF
    Controller Area Network (CAN) is a popular and very well-known bus system, both in academia and in industry. CAN protocol was introduced in the mid eighties by Robert Bosch GmbH [7] and it was internationally standardized in 1993 as ISO 11898-1 [24]. It was initially designed to distributed automotive control systems, as a single digital bus to replace traditional point-to-point cables that were growing in complexity, weight and cost with the introduction of new electrical and electronic systems. Nowadays CAN is still used extensively in automotive applications, with an excess of 400 million CAN enabled microcontrollers manufactured each year [14]. The widespread and successful use of CAN in the automotive industry, the low cost asso- ciated with high volume production of controllers and CAN's inherent technical merit, have driven to CAN adoption in other application domains such as: industrial communications, medical equipment, machine tool, robotics and in distributed embedded systems in general. CAN provides two layers of the stack of the Open Systems Interconnection (OSI) reference model: the physical layer and the data link layer. Optionally, it could also provide an additional application layer, not included on the CAN standard. Notice that CAN physical layer was not dened in Bosch original specication, only the data link layer was dened. However, the CAN ISO specication lled this gap and the physical layer was then fully specied. CAN is a message-oriented transmission protocol, i.e., it denes message contents rather than nodes and node addresses. Every message has an associated message identier, which is unique within the whole network, dening both the content and the priority of the message. Transmission rates are dened up to 1 Mbps. The large installed base of CAN nodes with low failure rates over almost two decades, led to the use of CAN in some critical applications such as Anti-locking Brake Systems (ABS) and Electronic Stability Program (ESP) in cars. In parallel with the wide dissemination of CAN in industry, the academia also devoted a large eort to CAN analysis and research, making CAN one of the must studied eldbuses. That is why a large number of books or book chapters describing CAN were published. The rst CAN book, written in French by D. Paret, was published in 1997 and presents the CAN basics [32]. More implementation oriented approaches, including CAN node implementation and application examples, can be found in Lorenz [28] and in Etschberger [16], while more compact descriptions of CAN can be found in [11] and in some chapters of [31]. Despite its success story, CAN application designers would be happier if CAN could be made faster, cover longer distances, be more deterministic and more dependable [34]. Over the years, several protocols based in CAN were presented, taking advantage of some CAN properties and trying to improve some known CAN drawbacks. This chapter, besides presenting an overview of CAN, describes also some other relevant higher level protocols based on CAN, such as CANopen [13], DeviceNet [6], FTT-CAN [1] and TTCAN [25]

    Position paper on time and event-triggered communication services in the context of e-manufacturing

    Get PDF
    Modern factories are complex systems where advances in networking and information technologies are opening new ways towards higher efficiency. Such move is being driven by market rules with ever-increasing competition levels, in search for faster time-to-market, improved process yield, non-stop operations, flexible manufacturing and tighter supply-chain coupling. All these aims present a common requirement, i.e. a realtime flow of information, from the plant-floor up to the management, maintenance, suppliers and clients, to support accurate monitoring and control of the factory. This stresses the importance achieved by the communication infrastructure in modern manufacturing industry. This paper presents the authors view concerning the current trends in modern factory communication systems. It addresses the problems of seamlessly integrating different information flows with diverse requirements, mainly in terms of timeliness. In this aspect, the debate between event-triggered and time-triggered communication is revisited as well as the joint support for both types of traffic. Finally, a view of where factory communication systems are moving to is also presented, showing the impact of open and widely available technologies.FCT. Comissão Europeia(ARTIST,IST-2001-34820

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings
    corecore