5,242 research outputs found

    Integration of BPM systems

    Get PDF
    New technologies have emerged to support the global economy where for instance suppliers, manufactures and retailers are working together in order to minimise the cost and maximise efficiency. One of the technologies that has become a buzz word for many businesses is business process management or BPM. A business process comprises activities and tasks, the resources required to perform each task, and the business rules linking these activities and tasks. The tasks may be performed by human and/or machine actors. Workflow provides a way of describing the order of execution and the dependent relationships between the constituting activities of short or long running processes. Workflow allows businesses to capture not only the information but also the processes that transform the information - the process asset (Koulopoulos, T. M., 1995). Applications which involve automated, human-centric and collaborative processes across organisations are inherently different from one organisation to another. Even within the same organisation but over time, applications are adapted as ongoing change to the business processes is seen as the norm in today’s dynamic business environment. The major difference lies in the specifics of business processes which are changing rapidly in order to match the way in which businesses operate. In this chapter we introduce and discuss Business Process Management (BPM) with a focus on the integration of heterogeneous BPM systems across multiple organisations. We identify the problems and the main challenges not only with regards to technologies but also in the social and cultural context. We also discuss the issues that have arisen in our bid to find the solutions

    Human-agent collectives

    No full text
    We live in a world where a host of computer systems, distributed throughout our physical and information environments, are increasingly implicated in our everyday actions. Computer technologies impact all aspects of our lives and our relationship with the digital has fundamentally altered as computers have moved out of the workplace and away from the desktop. Networked computers, tablets, phones and personal devices are now commonplace, as are an increasingly diverse set of digital devices built into the world around us. Data and information is generated at unprecedented speeds and volumes from an increasingly diverse range of sources. It is then combined in unforeseen ways, limited only by human imagination. People’s activities and collaborations are becoming ever more dependent upon and intertwined with this ubiquitous information substrate. As these trends continue apace, it is becoming apparent that many endeavours involve the symbiotic interleaving of humans and computers. Moreover, the emergence of these close-knit partnerships is inducing profound change. Rather than issuing instructions to passive machines that wait until they are asked before doing anything, we will work in tandem with highly inter-connected computational components that act autonomously and intelligently (aka agents). As a consequence, greater attention needs to be given to the balance of control between people and machines. In many situations, humans will be in charge and agents will predominantly act in a supporting role. In other cases, however, the agents will be in control and humans will play the supporting role. We term this emerging class of systems human-agent collectives (HACs) to reflect the close partnership and the flexible social interactions between the humans and the computers. As well as exhibiting increased autonomy, such systems will be inherently open and social. This means the participants will need to continually and flexibly establish and manage a range of social relationships. Thus, depending on the task at hand, different constellations of people, resources, and information will need to come together, operate in a coordinated fashion, and then disband. The openness and presence of many distinct stakeholders means participation will be motivated by a broad range of incentives rather than diktat. This article outlines the key research challenges involved in developing a comprehensive understanding of HACs. To illuminate this agenda, a nascent application in the domain of disaster response is presented

    Flexible and Emergent Workflows using Adaptive Agents

    Get PDF
    International audienceMost of existing workflow systems are rigid since they require to completely specify processes before their enactment and they also lack flexibility during their execution. This work proposes to view a workflow as a set of cooperative and adaptive agents interleaving its design and its execution leading to an emergent workflow. We use the theory of Adaptive Multi-Agent Systems (AMAS) to provide agents with adaptive capabilities and the whole multi-agent system with emergent "feature". We provide a meta-model linking workflow and AMAS concepts, and the specification of agent behavior and the resulting collaborations. A simulator has been implemented with the Make Agent Yourself platform

    Interaction protocols for human-driven crisis resolution processes

    Get PDF
    This work aims at providing a crisis cell with process-oriented tools to manage crisis resolutions. Indeed, the crisis cell members have to define the crisis resolution process, adapt it to face crisis evolutions, and guide its execution. Crisis resolution processes are interaction-intensive processes: they not only coordinate the performance of tasks to be undertaken on the impacted world, but they also support regulatory interactions between possibly geographically distributed crisis cell members. In order to deal with such an interweaving, this paper proposes to use Interaction Protocols to both model formal interactions and ease a cooperative adaptation and guidance of crisis resolution processes. After highlighting the benefits of Interaction Protocols to support this human and collective dimension, the paper presents a protocol meta-model for their specification. It then shows how to suitably integrate specified protocols into crisis resolution processes and how to implement this conceptual framework into a service oriented architecture

    A framework for the development and maintenance of adaptive, dynamic, context-aware information services

    Get PDF
    This paper presents an agent-based methodological approach to design distributed service-oriented systems which can adapt their behaviour according to changes in the environment and in the user needs, even taking the initiative to make suggestions and proactive choices. The highly dynamic, regulated, complex nature of the distributed, interconnected services is tackled through a methodological framework composed of three interconnected levels. The framework relies on coordination and organisational techniques, as well as on semantically annotated Web services to design, deploy and maintain a distributed system, using both a top-down and bottom-up approach. We present results based on a real use case: interactive community displays with tourist information and services, dynamically personalised according to user context and preferences.Preprin

    Simulating sensor networks

    Get PDF
    Tese de mestrado em Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2010Nos últimos anos, as redes de sensores sem fios conheceram um grande impulso em variadas ´áreas, nomeadamente na monitorização industrial e ambiental e, mais recentemente, na logística e noutras aplicações que envolvem processos de negócio e a chamada Internet das Coisas e dos Serviços. Contudo, e apesar dos avanços que se têm verificado tanto em termos de hardware como de software, estas redes são difíceis de programar, testar e instalar. A simulação de redes de sensores é frequentemente utilizada para testar e depurar aplicações para redes de sensores, pois permite testar a execução de das aplicações em ambientes virtuais. Esta tese aborda um problema que diz respeito a testar estas redes através de simulação: a definição (manual) de modelos. A nossa abordagem aponta para a geração de modelos de simulação directamente a partir de aplicações redes de sensores, em particular, modelos para o simulador VisualSense criados a partir de aplicações escritas em Callas, uma linguagem de programação para as redes de sensores. Para tal, criamos uma ferramenta capaz de gerar modelos que ´e paramétrica pelos modelos de rede e modelos sensores da rede que se pretende modelar, e ainda por um conjunto extensível de parâmetros de simulação. As nossas experiências mostraram resultados encorajadores na simulação de redes de grande escala, uma vez que conseguimos executar simulações com até 5000 nós. À medida que as redes de sensores sem fios começam a ser utilizadas em processos de negócio, a informação que recolhem do ambiente tem cada vez mais influência no decurso dos fluxos de trabalho associados aos processos de negócio. De um modo geral, os testes levados a cabo em fluxos de trabalho fazem uso de informação gravada em fluxos de trabalho executados previamente, tornando difícil testar o sistema como um todo. Em alternativa, e como uma segunda proposta desta tese, propomos testar fluxos de trabalho através da incorporação de resultados obtidos nas simulações das aplicações das redes de sensores. Além de cobrir os casos cobertos pela primeira abordagem, esta técnica permite testar novos fluxos de trabalho, bem como as mudanças ocorridas num determinado fluxo de trabalho por acontecimentos no ambiente.In recent years, Wireless Sensor Networks have gaining momentum in several fields, notably in industrial and environmental monitoring and, more recently, in logistics. However, and in spite of the advances in hardware and software, Wireless Sensor Networks are still hard to program, test, and deploy. Simulation is often used for testing and debugging sensor networks because they allow us to perform deployments in virtual environments. This paper addresses a key problem of testing such networks using simulation: (manual) model definition. Our approach is to generate simulation models directly from WSN applications, in particular, VisualSense simulator models from applications written in Callas, a programming language for WSN. For that purpose, we create a model generator tool that is parameter sable by network and sensor templates, and by an extensible set of simulation parameters. Our experiments show encouraging results on simulating large scale networks, as we are able to handle WSN with as many as 5000 nodes. As Wireless Sensor Networks begin to play some role in business processes, the information they gather from the environment influences the execution of workflows. Generally, the tests carried out on these systems make use of recorded information in earlier workflow executions, making it difficult to test the system as a whole. Alternatively, and as a second proposal of this thesis, we propose testing such workflows by incorporating results obtained from the simulation of sensor network applications. Besides covering the situations described in the first approach, this technique allows the testing of new workflows, as well as the changes made to a given workflow by events in the environment
    corecore