295 research outputs found

    Distributed Management of Massive Data: an Efficient Fine-Grain Data Access Scheme

    Get PDF
    This paper addresses the problem of efficiently storing and accessing massive data blocks in a large-scale distributed environment, while providing efficient fine-grain access to data subsets. This issue is crucial in the context of applications in the field of databases, data mining and multimedia. We propose a data sharing service based on distributed, RAM-based storage of data, while leveraging a DHT-based, natively parallel metadata management scheme. As opposed to the most commonly used grid storage infrastructures that provide mechanisms for explicit data localization and transfer, we provide a transparent access model, where data are accessed through global identifiers. Our proposal has been validated through a prototype implementation whose preliminary evaluation provides promising results

    Smart Microgrids: Overview and Outlook

    Full text link
    The idea of changing our energy system from a hierarchical design into a set of nearly independent microgrids becomes feasible with the availability of small renewable energy generators. The smart microgrid concept comes with several challenges in research and engineering targeting load balancing, pricing, consumer integration and home automation. In this paper we first provide an overview on these challenges and present approaches that target the problems identified. While there exist promising algorithms for the particular field, we see a missing integration which specifically targets smart microgrids. Therefore, we propose an architecture that integrates the presented approaches and defines interfaces between the identified components such as generators, storage, smart and \dq{dumb} devices.Comment: presented at the GI Informatik 2012, Braunschweig Germany, Smart Grid Worksho

    Storage Area Networks

    Get PDF
    This tutorial compares Storage area Network (SAN) technology with previous storage management solutions with particular attention to promised benefits of scalability, interoperability, and high-speed LAN-free backups. The paper provides an overview of what SANs are, why invest in them, and how SANs can be managed. The paper also discusses a primary management concern, the interoperability of vendor-specific SAN solutions. Bluefin, a storage management interface and interoperability solution is also explained. The paper concludes with discussion of SAN-related trends and implications for practice and research

    Adaptable Service Oriented Infrastructure Provisioning with Lightweight Containers Virtualization Technology

    Get PDF
    Modern computing infrastructures should enable realization of converged provisioning and governance operations on virtualized computing, storage and network resources used on behalf of users' workloads. These workloads must have ensured sufficient access to the resources to satisfy required QoS. This requires flexible platforms providing functionality for construction, activation and governance of Runtime Infrastructure which can be realized according to Service Oriented Infrastructure (SOI) paradigm. Implementation of the SOI management framework requires definition of flexible architecture and utilization of advanced software engineering and policy-based techniques. The paper presents an Adaptable SOI Provisioning Platform which supports adaptable SOI provisioning with lightweight virtualization, compliant with the structured process model suitable for construction, activation and governance of IT environments. The requirements, architecture and implementation of the platform are all discussed. Practical usage of the platform is presented on the basis of a complex case study for provisioning JEE middleware on top of the Solaris 10 lightweight virtualization platform

    A replicated file system for Grid computing

    Full text link
    To meet the rigorous demands of large-scale data sharing in global collaborations, we present a replication scheme for NFSv4 that supports mutable replication without sacrificing strong consistency guarantees. Experimental evaluation indicates a substantial performance advantage over a single-server system. With the introduction of a hierarchical replication control protocol, the overhead of replication is negligible even when applications mostly write and replication servers are widely distributed. Evaluation with the NAS Grid Benchmarks demonstrates that our system provides comparable and often better performance than GridFTP, the de facto standard for Grid data sharing. Copyright © 2008 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/60228/1/1286_ftp.pd

    A user-centric system architecture for residential energy consumption reduction

    Get PDF
    Long-term energy consumption reduction can be achieved more readily through sensible cooperation between end users and technological advancements. The DANCER project presented here proposes a user-centric residential energy management system, with the intention to achieve long-term energy related behavioural changes, thus improving the energy efficiency of modern homes. Although, it follows the same basic principles as other contemporary approaches, it focuses on minimizing the interaction of the user with the system. This is achieved through an improved feedback mechanism and a generic, policy based service that takes advantage of the modularity and generality of the software architecture. The proposed system is designed to support a variety of technologies (WiFi, Zigbee, X10), in order to ameliorate the input and output of the decision making operation. In this paper, the general outline of the DANCER system architecture and its most important components are discussed and the prototype test-bed is presented. Special consideration is given to the implementation, operation and response behaviour of the prototype

    A Generic Development and Deployment Framework for Cloud Computing and Distributed Applications

    Get PDF
    Cloud computing have paved the way for advance of IT-based demand services. This technology helps decrease operation costs, solve scalability issue and many more user and provider constraints. However, development and deployment of distributed applications on cloud environment becomes a more and more complex tasks. Cloud users must spend a lot of time to prepare, install and configure their applications on clouds. In addition, after development and deployment, the applications almost cannot move from a cloud to others due to the lack of interoperability between them. To address these problems, we present in this paper a novel development and deployment framework for cloud distributed applications/services. Our approach is based on abstraction and object-oriented programming technique, allowing users to easily and rapidly develop and deploy their services into cloud environment. The approach also enables service migration and interoperability among the clouds
    • …
    corecore