386 research outputs found

    Robust Kernel-based Feature Representation for 3D Point Cloud Analysis via Circular Graph Convolutional Network

    Full text link
    Feature descriptors of point clouds are used in several applications, such as registration and part segmentation of 3D point clouds. Learning discriminative representations of local geometric features is unquestionably the most important task for accurate point cloud analyses. However, it is challenging to develop rotation or scale-invariant descriptors. Most previous studies have either ignored rotations or empirically studied optimal scale parameters, which hinders the applicability of the methods for real-world datasets. In this paper, we present a new local feature description method that is robust to rotation, density, and scale variations. Moreover, to improve representations of the local descriptors, we propose a global aggregation method. First, we place kernels aligned around each point in the normal direction. To avoid the sign problem of the normal vector, we use a symmetric kernel point distribution in the tangential plane. From each kernel point, we first projected the points from the spatial space to the feature space, which is robust to multiple scales and rotation, based on angles and distances. Subsequently, we perform graph convolutions by considering local kernel point structures and long-range global context, obtained by a global aggregation method. We experimented with our proposed descriptors on benchmark datasets (i.e., ModelNet40 and ShapeNetPart) to evaluate the performance of registration, classification, and part segmentation on 3D point clouds. Our method showed superior performances when compared to the state-of-the-art methods by reducing 70%\% of the rotation and translation errors in the registration task. Our method also showed comparable performance in the classification and part-segmentation tasks with simple and low-dimensional architectures.Comment: 10 pages, 9 figure

    PointAtrousGraph: Deep Hierarchical Encoder-Decoder with Point Atrous Convolution for Unorganized 3D Points

    Full text link
    Motivated by the success of encoding multi-scale contextual information for image analysis, we propose our PointAtrousGraph (PAG) - a deep permutation-invariant hierarchical encoder-decoder for efficiently exploiting multi-scale edge features in point clouds. Our PAG is constructed by several novel modules, such as Point Atrous Convolution (PAC), Edge-preserved Pooling (EP) and Edge-preserved Unpooling (EU). Similar with atrous convolution, our PAC can effectively enlarge receptive fields of filters and thus densely learn multi-scale point features. Following the idea of non-overlapping max-pooling operations, we propose our EP to preserve critical edge features during subsampling. Correspondingly, our EU modules gradually recover spatial information for edge features. In addition, we introduce chained skip subsampling/upsampling modules that directly propagate edge features to the final stage. Particularly, our proposed auxiliary loss functions can further improve our performance. Experimental results show that our PAG outperform previous state-of-the-art methods on various 3D semantic perception applications.Comment: 11 pages, 10 figure
    • …
    corecore