3,873 research outputs found

    Vitis: A Gossip-based Hybrid Overlay for Internet-scale Publish/Subscribe

    Get PDF
    Peer-to-peer overlay networks are attractive solutions for building Internet-scale publish/subscribe systems. However, scalability comes with a cost: a message published on a certain topic often needs to traverse a large number of uninterested (unsubscribed) nodes before reaching all its subscribers. This might sharply increase resource consumption for such relay nodes (in terms of bandwidth transmission cost, CPU, etc) and could ultimately lead to rapid deterioration of the system’s performance once the relay nodes start dropping the messages or choose to permanently abandon the system. In this paper, we introduce Vitis, a gossip-based publish/subscribe system that significantly decreases the number of relay messages, and scales to an unbounded number of nodes and topics. This is achieved by the novel approach of enabling rendezvous routing on unstructured overlays. We construct a hybrid system by injecting structure into an otherwise unstructured network. The resulting structure resembles a navigable small-world network, which spans along clusters of nodes that have similar subscriptions. The properties of such an overlay make it an ideal platform for efficient data dissemination in large-scale systems. We perform extensive simulations and evaluate Vitis by comparing its performance against two base-line publish/subscribe systems: one that is oblivious to node subscriptions, and another that exploits the subscription similarities. Our measurements show that Vitis significantly outperforms the base-line solutions on various subscription and churn scenarios, from both synthetic models and real-world traces

    Self-Healing Protocols for Connectivity Maintenance in Unstructured Overlays

    Full text link
    In this paper, we discuss on the use of self-organizing protocols to improve the reliability of dynamic Peer-to-Peer (P2P) overlay networks. Two similar approaches are studied, which are based on local knowledge of the nodes' 2nd neighborhood. The first scheme is a simple protocol requiring interactions among nodes and their direct neighbors. The second scheme adds a check on the Edge Clustering Coefficient (ECC), a local measure that allows determining edges connecting different clusters in the network. The performed simulation assessment evaluates these protocols over uniform networks, clustered networks and scale-free networks. Different failure modes are considered. Results demonstrate the effectiveness of the proposal.Comment: The paper has been accepted to the journal Peer-to-Peer Networking and Applications. The final publication is available at Springer via http://dx.doi.org/10.1007/s12083-015-0384-

    Gossiping with Multiple Messages

    Full text link
    This paper investigates the dissemination of multiple pieces of information in large networks where users contact each other in a random uncoordinated manner, and users upload one piece per unit time. The underlying motivation is the design and analysis of piece selection protocols for peer-to-peer networks which disseminate files by dividing them into pieces. We first investigate one-sided protocols, where piece selection is based on the states of either the transmitter or the receiver. We show that any such protocol relying only on pushes, or alternatively only on pulls, is inefficient in disseminating all pieces to all users. We propose a hybrid one-sided piece selection protocol -- INTERLEAVE -- and show that by using both pushes and pulls it disseminates kk pieces from a single source to nn users in 10(k+logn)10(k+\log n) time, while obeying the constraint that each user can upload at most one piece in one unit of time, with high probability for large nn. An optimal, unrealistic centralized protocol would take k+log2nk+\log_2 n time in this setting. Moreover, efficient dissemination is also possible if the source implements forward erasure coding, and users push the latest-released coded pieces (but do not pull). We also investigate two-sided protocols where piece selection is based on the states of both the transmitter and the receiver. We show that it is possible to disseminate nn pieces to nn users in n+O(logn)n+O(\log n) time, starting from an initial state where each user has a unique piece.Comment: Accepted to IEEE INFOCOM 200

    GLive: The Gradient overlay as a market maker for mesh-based P2P live streaming

    Get PDF
    Peer-to-Peer (P2P) live video streaming over the Internet is becoming increasingly popular, but it is still plagued by problems of high playback latency and intermittent playback streams. This paper presents GLive, a distributed market-based solution that builds a mesh overlay for P2P live streaming. The mesh overlay is constructed such that (i) nodes with increasing upload bandwidth are located closer to the media source, and (ii) nodes with similar upload bandwidth become neighbours. We introduce a market-based approach that matches nodes willing and able to share the stream with one another. However, market-based approaches converge slowly on random overlay networks, and we improve the rate of convergence by adapting our market-based algorithm to exploit the clustering of nodes with similar upload bandwidths in our mesh overlay. We address the problem of free-riding through nodes preferentially uploading more of the stream to the best uploaders. We compare GLive with our previous tree-based streaming protocol, Sepidar, and NewCoolstreaming in simulation, and our results show significantly improved playback continuity and playback latency

    Enabling Internet-Scale Publish/Subscribe In Overlay Networks

    Get PDF
    As the amount of data in todays Internet is growing larger, users are exposed to too much information, which becomes increasingly more difficult to comprehend. Publish/subscribe systems leverage this problem by providing loosely-coupled communications between producers and consumers of data in a network. Data consumers, i.e., subscribers, are provided with a subscription mechanism, to express their interests in a subset of data, in order to be notified only when some data that matches their subscription is generated by the producers, i.e., publishers. Most publish/subscribe systems today, are based on the client/server architectural model. However, to provide the publish/subscribe service in large scale, companies either have to invest huge amount of money for over-provisioning the resources, or are prone to frequent service failures. Peer-to-peer overlay networks are attractive alternative solutions for building Internet-scale publish/subscribe systems. However, scalability comes with a cost: a published message often needs to traverse a large number of uninterested (unsubscribed) nodes before reaching all its subscribers. We refer to this undesirable traffic, as relay overhead. Without careful considerations, the relay overhead might sharply increase resource consumption for the relay nodes (in terms of bandwidth transmission cost, CPU, etc) and could ultimately lead to rapid deterioration of the system’s performance once the relay nodes start dropping the messages or choose to permanently abandon the system. To mitigate this problem, some solutions use unbounded number of connections per node, while some other limit the expressiveness of the subscription scheme. In this thesis work, we introduce two systems called Vitis and Vinifera, for topic-based and content-based publish/subscribe models, respectively. Both these systems are gossip-based and significantly decrease the relay overhead. We utilize novel techniques to cluster together nodes that exhibit similar subscriptions. In the topic-based model, distinct clusters for each topic are constructed, while clusters in the content-based model are fuzzy and do not have explicit boundaries. We augment these clustered overlays by links that facilitate routing in the network. We construct a hybrid system by injecting structure into an otherwise unstructured network. The resulting structures resemble navigable small-world networks, which spans along clusters of nodes that have similar subscriptions. The properties of such overlays make them an ideal platform for efficient data dissemination in large-scale systems. The systems requires only a bounded node degree and as we show, through simulations, they scale well with the number of nodes and subscriptions and remain efficient under highly complex subscription patterns, high publication rates, and even in the presence of failures in the network. We also compare both systems against some state-of-the-art publish/subscribe systems. Our measurements show that both Vitis and Vinifera significantly outperform their counterparts on various subscription and churn scenarios, under both synthetic workloads and real-world traces

    Predicting the Impact of Measures Against P2P Networks on the Transient Behaviors

    Get PDF
    The paper has two objectives. The first is to study rigorously the transient behavior of some P2P networks whenever information is replicated and disseminated according to epidemic-like dynamics. The second is to use the insight gained from the previous analysis in order to predict how efficient are measures taken against peer-to-peer (P2P) networks. We first introduce a stochastic model which extends a classical epidemic model and characterize the P2P swarm behavior in presence of free riding peers. We then study a second model in which a peer initiates a contact with another peer chosen randomly. In both cases the network is shown to exhibit a phase transition: a small change in the parameters causes a large change in the behavior of the network. We show, in particular, how the phase transition affects measures that content provider networks may take against P2P networks that distribute non-authorized music or books, and what is the efficiency of counter-measures.Comment: IEEE Infocom (2011

    LayStream: composing standard gossip protocols for live video streaming

    Get PDF
    Gossip-based live streaming is a popular topic, as attested by the vast literature on the subject. Despite the particular merits of each proposal, all need to implement and deal with common challenges such as membership management, topology construction and video packets dissemination. Well-principled gossip-based protocols have been proposed in the literature for each of these aspects. Our goal is to assess the feasibility of building a live streaming system, \sys, as a composition of these existing protocols, to deploy the resulting system on real testbeds, and report on lessons learned in the process. Unlike previous evaluations conducted by simulations and considering each protocol independently, we use real deployments. We evaluate protocols both independently and as a layered composition, and unearth specific problems and challenges associated with deployment and composition. We discuss and present solutions for these, such as a novel topology construction mechanism able to cope with the specificities of a large-scale and delay-sensitive environment, but also with requirements from the upper layer. Our implementation and data are openly available to support experimental reproducibility

    Content Distribution in P2P Systems

    Get PDF
    The report provides a literature review of the state-of-the-art for content distribution. The report's contributions are of threefold. First, it gives more insight into traditional Content Distribution Networks (CDN), their requirements and open issues. Second, it discusses Peer-to-Peer (P2P) systems as a cheap and scalable alternative for CDN and extracts their design challenges. Finally, it evaluates the existing P2P systems dedicated for content distribution according to the identied requirements and challenges
    corecore