21 research outputs found

    On the validity of memristor modeling in the neural network literature

    Full text link
    An analysis of the literature shows that there are two types of non-memristive models that have been widely used in the modeling of so-called "memristive" neural networks. Here, we demonstrate that such models have nothing in common with the concept of memristive elements: they describe either non-linear resistors or certain bi-state systems, which all are devices without memory. Therefore, the results presented in a significant number of publications are at least questionable, if not completely irrelevant to the actual field of memristive neural networks

    Finite-time Anti-synchronization of Memristive Stochastic BAM Neural Networks with Probabilistic Time-varying Delays

    Get PDF
    This paper investigates the drive-response finite-time anti-synchronization for memristive bidirectional associative memory neural networks (MBAMNNs). Firstly, a class of MBAMNNs with mixed probabilistic time-varying delays and stochastic perturbations is first formulated and analyzed in this paper. Secondly, an nonlinear control law is constructed and utilized to guarantee drive-response finite-time anti-synchronization of the neural networks. Thirdly, by employing some inequality technique and constructing an appropriate Lyapunov function, some anti-synchronization criteria are derived. Finally, a number simulation is provided to demonstrate the effectiveness of the proposed mechanism

    Recent Advances and Applications of Fractional-Order Neural Networks

    Get PDF
    This paper focuses on the growth, development, and future of various forms of fractional-order neural networks. Multiple advances in structure, learning algorithms, and methods have been critically investigated and summarized. This also includes the recent trends in the dynamics of various fractional-order neural networks. The multiple forms of fractional-order neural networks considered in this study are Hopfield, cellular, memristive, complex, and quaternion-valued based networks. Further, the application of fractional-order neural networks in various computational fields such as system identification, control, optimization, and stability have been critically analyzed and discussed

    Periodic Solution for a Complex-valued Network Model with Discrete Delay

    Get PDF
    For a tridiagonal two-layer real six-neuron model, the Hopf bifurcation was investigated by studying the eigenvalue equations of the related linear system in the literature. In the present paper, we extend this two-layer real six-neuron network model into a complex-valued delayed network model. Based on the mathematical analysis method, some sufficient conditions to guarantee the existence of periodic oscillatory solutions are established under the assumption that the activation function can be separated into its real and imaginary parts. Our sufficient conditions obtained by the mathematical analysis method in this paper are simpler than those obtained by the Hopf bifurcation method. Computer simulation is provided to illustrate the correctness of the theoretical results

    Novel fixed-time stabilization of quaternion-valued BAMNNs with disturbances and time-varying coefficients

    Get PDF
    In this paper, with the quaternion number and time-varying coefficients introduced into traditional BAMNNs, the model of quaternion-valued BAMNNs are formulated. For the first time, fixed-time stabilization of time-varying quaternion-valued BAMNNs is investigated. A novel fixed-time control method is adopted, in which the choice of the Lyapunov function is more general than in most previous results. To cope with the noncommutativity of the quaternion multiplication, two different fixed-time control methods are provided, a decomposition method and a non-decomposition method. Furthermore, to reduce the control strength and improve control efficiency, an adaptive fixed-time control strategy is proposed. Lastly, numerical examples are presented to demonstrate the effectiveness of the theoretical results. © 2020 the Author(s), licensee AIMS Press

    Global exponential convergence of delayed inertial Cohen–Grossberg neural networks

    Get PDF
    In this paper, the exponential convergence of delayed inertial Cohen–Grossberg neural networks (CGNNs) is studied. Two methods are adopted to discuss the inertial CGNNs, one is expressed as two first-order differential equations by selecting a variable substitution, and the other does not change the order of the system based on the nonreduced-order method. By establishing appropriate Lyapunov function and using inequality techniques, sufficient conditions are obtained to ensure that the discussed model converges exponentially to a ball with the prespecified convergence rate. Finally, two simulation examples are proposed to illustrate the validity of the theorem results

    A locally active discrete memristor model and its application in a hyperchaotic map

    Get PDF
    © 2022 Springer Nature Switzerland AG. Part of Springer Nature. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1007/s11071-021-07132-5The continuous memristor is a popular topic of research in recent years, however, there is rare discussion about the discrete memristor model, especially the locally active discrete memristor model. This paper proposes a locally active discrete memristor model for the first time and proves the three fingerprints characteristics of this model according to the definition of generalized memristor. A novel hyperchaotic map is constructed by coupling the discrete memristor with a two-dimensional generalized square map. The dynamical behaviors are analyzed with attractor phase diagram, bifurcation diagram, Lyapunov exponent spectrum, and dynamic behavior distribution diagram. Numerical simulation analysis shows that there is significant improvement in the hyperchaotic area, the quasi-periodic area and the chaotic complexity of the two-dimensional map when applying the locally active discrete memristor. In addition, antimonotonicity and transient chaos behaviors of system are reported. In particular, the coexisting attractors can be observed in this discrete memristive system, resulting from the different initial values of the memristor. Results of theoretical analysis are well verified with hardware experimental measurements. This paper lays a great foundation for future analysis and engineering application of the discrete memristor and relevant the study of other hyperchaotic maps.Peer reviewedFinal Accepted Versio
    corecore