6,100 research outputs found

    COORDINATION OF LEADER-FOLLOWER MULTI-AGENT SYSTEM WITH TIME-VARYING OBJECTIVE FUNCTION

    Get PDF
    This thesis aims to introduce a new framework for the distributed control of multi-agent systems with adjustable swarm control objectives. Our goal is twofold: 1) to provide an overview to how time-varying objectives in the control of autonomous systems may be applied to the distributed control of multi-agent systems with variable autonomy level, and 2) to introduce a framework to incorporate the proposed concept to fundamental swarm behaviors such as aggregation and leader tracking. Leader-follower multi-agent systems are considered in this study, and a general form of time-dependent artificial potential function is proposed to describe the varying objectives of the system in the case of complete information exchange. Using Lyapunov methods, the stability and boundedness of the agents\u27 trajectories under single order and higher order dynamics are analyzed. Illustrative numerical simulations are presented to demonstrate the validity of our results. Then, we extend these results for multi-agent systems with limited information exchange and switching communication topology. The first steps of the realization of an experimental framework have been made with the ultimate goal of verifying the simulation results in practice

    Distributed Robust Consensus Control of Multi-agent Systems with Heterogeneous Matching Uncertainties

    Full text link
    This paper considers the distributed consensus problem of linear multi-agent systems subject to different matching uncertainties for both the cases without and with a leader of bounded unknown control input. Due to the existence of nonidentical uncertainties, the multi-agent systems discussed in this paper are essentially heterogeneous. For the case where the communication graph is undirected and connected, a distributed continuous static consensus protocol based on the relative state information is first designed, under which the consensus error is uniformly ultimately bounded and exponentially converges to a small adjustable residual set. A fully distributed adaptive consensus protocol is then designed, which, contrary to the static protocol, relies on neither the eigenvalues of the Laplacian matrix nor the upper bounds of the uncertainties. For the case where there exists a leader whose control input is unknown and bounded, distributed static and adaptive consensus protocols are proposed to ensure the boundedness of the consensus error. It is also shown that the proposed protocols can be redesigned so as to ensure the boundedness of the consensus error in the presence of bounded external disturbances which do not satisfy the matching condition. A sufficient condition for the existence of the proposed protocols is that each agent is stabilizable.Comment: 16 page, 10 figures. This manuscript is an extended version of our paper accepted for publication by Automatic

    Robust Cooperative Manipulation without Force/Torque Measurements: Control Design and Experiments

    Full text link
    This paper presents two novel control methodologies for the cooperative manipulation of an object by N robotic agents. Firstly, we design an adaptive control protocol which employs quaternion feedback for the object orientation to avoid potential representation singularities. Secondly, we propose a control protocol that guarantees predefined transient and steady-state performance for the object trajectory. Both methodologies are decentralized, since the agents calculate their own signals without communicating with each other, as well as robust to external disturbances and model uncertainties. Moreover, we consider that the grasping points are rigid, and avoid the need for force/torque measurements. Load distribution is also included via a grasp matrix pseudo-inverse to account for potential differences in the agents' power capabilities. Finally, simulation and experimental results with two robotic arms verify the theoretical findings
    • …
    corecore