20,723 research outputs found

    Auto-Encoding Scene Graphs for Image Captioning

    Full text link
    We propose Scene Graph Auto-Encoder (SGAE) that incorporates the language inductive bias into the encoder-decoder image captioning framework for more human-like captions. Intuitively, we humans use the inductive bias to compose collocations and contextual inference in discourse. For example, when we see the relation `person on bike', it is natural to replace `on' with `ride' and infer `person riding bike on a road' even the `road' is not evident. Therefore, exploiting such bias as a language prior is expected to help the conventional encoder-decoder models less likely overfit to the dataset bias and focus on reasoning. Specifically, we use the scene graph --- a directed graph (G\mathcal{G}) where an object node is connected by adjective nodes and relationship nodes --- to represent the complex structural layout of both image (I\mathcal{I}) and sentence (S\mathcal{S}). In the textual domain, we use SGAE to learn a dictionary (D\mathcal{D}) that helps to reconstruct sentences in the S→G→D→S\mathcal{S}\rightarrow \mathcal{G} \rightarrow \mathcal{D} \rightarrow \mathcal{S} pipeline, where D\mathcal{D} encodes the desired language prior; in the vision-language domain, we use the shared D\mathcal{D} to guide the encoder-decoder in the I→G→D→S\mathcal{I}\rightarrow \mathcal{G}\rightarrow \mathcal{D} \rightarrow \mathcal{S} pipeline. Thanks to the scene graph representation and shared dictionary, the inductive bias is transferred across domains in principle. We validate the effectiveness of SGAE on the challenging MS-COCO image captioning benchmark, e.g., our SGAE-based single-model achieves a new state-of-the-art 127.8127.8 CIDEr-D on the Karpathy split, and a competitive 125.5125.5 CIDEr-D (c40) on the official server even compared to other ensemble models

    Automated Visual Fin Identification of Individual Great White Sharks

    Get PDF
    This paper discusses the automated visual identification of individual great white sharks from dorsal fin imagery. We propose a computer vision photo ID system and report recognition results over a database of thousands of unconstrained fin images. To the best of our knowledge this line of work establishes the first fully automated contour-based visual ID system in the field of animal biometrics. The approach put forward appreciates shark fins as textureless, flexible and partially occluded objects with an individually characteristic shape. In order to recover animal identities from an image we first introduce an open contour stroke model, which extends multi-scale region segmentation to achieve robust fin detection. Secondly, we show that combinatorial, scale-space selective fingerprinting can successfully encode fin individuality. We then measure the species-specific distribution of visual individuality along the fin contour via an embedding into a global `fin space'. Exploiting this domain, we finally propose a non-linear model for individual animal recognition and combine all approaches into a fine-grained multi-instance framework. We provide a system evaluation, compare results to prior work, and report performance and properties in detail.Comment: 17 pages, 16 figures. To be published in IJCV. Article replaced to update first author contact details and to correct a Figure reference on page
    • …
    corecore