384 research outputs found

    R3MC: A Riemannian three-factor algorithm for low-rank matrix completion

    Full text link
    We exploit the versatile framework of Riemannian optimization on quotient manifolds to develop R3MC, a nonlinear conjugate-gradient method for low-rank matrix completion. The underlying search space of fixed-rank matrices is endowed with a novel Riemannian metric that is tailored to the least-squares cost. Numerical comparisons suggest that R3MC robustly outperforms state-of-the-art algorithms across different problem instances, especially those that combine scarcely sampled and ill-conditioned data.Comment: Accepted for publication in the proceedings of the 53rd IEEE Conference on Decision and Control, 201

    Guarantees of Riemannian Optimization for Low Rank Matrix Completion

    Full text link
    We study the Riemannian optimization methods on the embedded manifold of low rank matrices for the problem of matrix completion, which is about recovering a low rank matrix from its partial entries. Assume mm entries of an n×nn\times n rank rr matrix are sampled independently and uniformly with replacement. We first prove that with high probability the Riemannian gradient descent and conjugate gradient descent algorithms initialized by one step hard thresholding are guaranteed to converge linearly to the measured matrix provided \begin{align*} m\geq C_\kappa n^{1.5}r\log^{1.5}(n), \end{align*} where CκC_\kappa is a numerical constant depending on the condition number of the underlying matrix. The sampling complexity has been further improved to \begin{align*} m\geq C_\kappa nr^2\log^{2}(n) \end{align*} via the resampled Riemannian gradient descent initialization. The analysis of the new initialization procedure relies on an asymmetric restricted isometry property of the sampling operator and the curvature of the low rank matrix manifold. Numerical simulation shows that the algorithms are able to recover a low rank matrix from nearly the minimum number of measurements

    Riemannian preconditioning

    Get PDF
    This paper exploits a basic connection between sequential quadratic programming and Riemannian gradient optimization to address the general question of selecting a metric in Riemannian optimization, in particular when the Riemannian structure is sought on a quotient manifold. The proposed method is shown to be particularly insightful and efficient in quadratic optimization with orthogonality and/or rank constraints, which covers most current applications of Riemannian optimization in matrix manifolds.Belgium Science Policy Office, FNRS (Belgium)This is the author accepted manuscript. The final version is available from The Society for Industrial and Applied Mathematics via http://dx.doi.org/10.1137/14097086
    • …
    corecore