1,025 research outputs found

    Stochastic bottleneck capacity, merging traffic and morning commute

    Get PDF
    This paper investigates the impact of stochastic capacity at the downstream bottleneck after a merge and the impact of merging behavior on the morning commuters' departure-time patterns. The classic bottleneck theory is extended to include a uniformly distributed capacity and the commuters' equilibrium departure patterns are derived for two different merging rules. The results show that uncertainty in the bottleneck capacity increases the commuters' mean trip cost and lengthens the peak period, and that the system total cost is lower under give-way merging than under a fixed-rate merging. Capacity paradoxes with dynamic user responses are found under both merging rules

    Agent-Based Modeling and Simulation for the Bus-Corridor Problem in a Many-to-One Mass Transit System

    Get PDF
    With the growing problem of urban traffic congestion, departure time choice is becoming a more important factor to commuters. By using multiagent modeling and the Bush-Mosteller reinforcement learning model, we simulated the day-to-day evolution of commuters’ departure time choice on a many-to-one mass transit system during the morning peak period. To start with, we verified the model by comparison with traditional analytical methods. Then the formation process of departure time equilibrium is investigated additionally. Seeing the validity of the model, some initial assumptions were relaxed and two groups of experiments were carried out considering commuters’ heterogeneity and memory limitations. The results showed that heterogeneous commuters’ departure time distribution is broader and has a lower peak at equilibrium and different people behave in different pattern. When each commuter has a limited memory, some fluctuations exist in the evolutionary dynamics of the system, and hence an ideal equilibrium can hardly be reached. This research is helpful in acquiring a better understanding of commuter’s departure time choice and commuting equilibrium of the peak period; the approach also provides an effective way to explore the formation and evolution of complicated traffic phenomena

    Modelling dynamic stochastic user equilibrium for urban road networks

    Get PDF
    In this study a dynamic assignment model is developed which estimates travellers' route and departure time choices and the resulting time varying traffic patterns during the morning peak. The distinctive feature of the model is that it does not restrict the geometry of the network to specific forms. The proposed framework of analysis consists of a travel time model, a demand model and a demand adjustment mechanism. Two travel time models are proposed. The first is based on elementary relationships from traffic flow theory and provides the framework for a macroscopic simulation model which calculates the time varying flow patterns and link travel times given the time dependent departure rate distributions; the second is based on queueing theory and models roads as bottlenecks through which traffic flow is either uncongested or fixed at a capacity independent of traffic density. The demand model is based on the utility maximisation decision rule and defines the time dependent departure rates associated with each reasonable route connecting, the O-D pairs of the network, given the total utility associated with each combination of departure time and route. Travellers' choices are assumed to result from the trade-off between travel time and schedule delay and each individual is assumed to first choose a departure time t, and then select a reasonable route, conditional on the choice of t. The demand model has therefore the form of a nested logit. The demand adjustment mechanism is derived from a Markovian model, and describes the day-to-day evolution of the departure rate distributions. Travellers are assumed to modify their trip choice decisions based on the information they acquire from recent trips. The demand adjustment mechanism is used in order to find the equilibrium state of the system, defined as the state at which travellers believe that they cannot increase their utility of travel by unilaterally changing route or departure time. The model outputs exhibit the characteristics of real world traffic patterns observed during the peak, i. e., time varying flow patterns and travel times which result from time varying departure rates from the origins. It is shown that increasing the work start time flexibility results in a spread of the departure rate distributions over a longer period and therefore reduces the level of congestion in the network. Furthermore, it was shown that increasing the total demand using the road network results in higher levels of congestion and that travellers tend to depart earlier in an attempt to compensate for the increase in travel times. Moreover, experiments using the queueing theory based travel time model have shown that increasing the capacity of a bottleneck may cause congestion to develop downstream, which in turn may result in an increase of the average travel time for certain O-D pairs. The dynamic assignment model is also applied to estimate the effects that different road pricing policies may have on trip choices and the level of congestion; the model is used to demonstrate the development of the shifting peak phenomenon. Furthermore, the effect of information availability on the traffic patterns is investigated through a number of experiments using the developed dynamic assignment model and assuming that guided drivers form a class of users characterised by lower variability of preferences with respect to route choice

    Embedding risk attitudes in a scheduling model: Application to the study of commuting departure time

    Get PDF
    Traditionally, the value of travel time savings (VTTS) and the value of reliability (or reduced variability) are estimated within a linear utility functional form, which assumes risk-neutral attitudes for decision makers. In this paper, we develop non-linear scheduling models to address both risk attitude and preference in the context of a stated choice experiment of car commuters facing risky choices where the risk is associated with the trip time. We also investigate unobserved between-individual heterogeneity in time-related parameters and risk attitudes using a mixed multinomial logit (MMNL) model. More importantly, we calculate the willingness to pay values for reducing the mean travel time and variability (earlier/later than the preferred arrival time) within the non-linear scheduling framework. This model is then used to estimate preferred departure times for commuters, assuming that random link capacities are the source of travel time variability. Results show that the more variable travel times are, the earlier commuters depart, and that the non-linear scheduling model predicts earlier optimal departure times than the traditional linear scheduling model. Some important issues related to modelling non-linearity are also discussed

    Dynamic and Static congestion models: A review

    Get PDF
    We begin by providing an overview of the conventional static equilibrium approach. In such model both the flow of trips and congestion delay are assumed to be constant. A drawback of the static model is that the time interval during which travel occurs is not specified so that the model cannot describe changes in the duration of congestion that result from changes in demand or capacity. This limitation is overcome in the Vickrey/Arnott, de Palma Lindsey bottleneck model, which combines congestion in the form of queuing behind a bottleneck with users' trip-timing preferences and departure time decisions. We derive the user equilibrium and social optimum for the basic bottleneck model, and explain how the optimum can be decentralized using a time-varying toll. They then review some extensions of the basic model that encompass elastic demand, user heterogeneity, stochastic demand and capacity and small networks. We conclude by identifying some unresolved modelling issues that apply not only to the bottleneck model but to trip-timing preferences and congestion dynamics in general

    A passenger-to-driver matching model for commuter carpooling: Case study and sensitivity analysis

    Get PDF
    For the transport sector, promoting carpooling to private car users could be an effective strategy over reducing vehicle kilometers traveled. Theoretical studies have verified that carpooling is not only beneficial to drivers and passengers but also to the environment. Nevertheless, despite carpooling having a huge potential market in car commuters, it is not widely used in practice worldwide. In this paper, we develop a passenger-to-driver matching model based on the characteristics of a private-car based carpooling service, and propose an estimation method for time-based costs as well as the psychological costs of carpooling trips, taking into account the potential motivations and preferences of potential carpoolers. We test the model using commuting data for the Greater London from the UK Census 2011 and travel-time data from Uber. We investigate the service sensitivity to varying carpooling participant rates and fee-sharing ratios with the aim of improving matching performance at least cost. Finally, to illustrate how our matching model might be used, we test some practical carpooling promotion instruments. We found that higher participant role flexibility in the system can improve matching performance significantly. Encouraging commuters to walk helps form more carpooling trips and further reduces carbon emissions. Different fee-sharing ratios can influence matching performance, hence determination of optimal pricing should be based on the specific matching model and its cost parameters. Disincentives like parking charges and congestion charges seem to have a greater effect on carpooling choice than incentives like preferential parking and subsidies. The proposed model and associated findings provide valuable insights for designing an effective matching system and incentive scheme for carpooling services in practice

    A review on transit assignment modelling approaches to congested networks: a new perspective

    Get PDF
    This paper reviews a number of studies on both frequency-and schedule-based transit assignment models that have been proposed by far, wherein various behavioural assumptions on a wide range of aspects are embedded. With a reinvestigation on the relationships and homogeneity between different modelling approaches, it explores the representative veins of the models, and thereby extends a new perspective to the existing reviews under a historical context. Meanwhile, both advantages and disadvantages of these methods are presented. On the strength of the analyses and discussions of the state-of-the-art transit assignment models, further research directions are suggested

    Service network design for emerging modes in air transport: autonomous airport inter-terminal bus shuttle and air metro

    Full text link
    Emerging modes of air transport such as autonomous airport shuttle and air taxi are potentially efficient alternatives to current transport practices such as bus and train. This thesis examines bus shuttle service within an airport and air metro as two examples of network design. Within an airport, the bus shuttle serves passengers between the terminals, train stations, parking lots, hotels, and shopping areas. Air metro is a type of pre-planned service in urban air mobility that accommodates passengers for intra- or inter-city trips. The problems are to optimise the service, and the outputs including the optimal fleet size, dispatch pattern and schedule. Based on the proposed time-space networks, the service network design problems are formulated as mixed integer linear programs. The heterogeneous multi-type bus fleet case and stochastic demand case are extended for the airport shuttle case, while a rolling horizon optimisation is adopted for the air metro case. In the autonomous airport inter-terminal bus shuttle case, a Monte Carlo simulation-based approach is proposed to solve the case with demand stochasticity, which is then further embedded into an "effective" passenger demand framework. The "effective" demand is the summation of mean demand value and a safety margin. By comparing the proposed airport shuttle service to the current one, it is found that the proposed service can save approximately 27% of the total system cost. The results for stochastic problem suggest estimating the safety margin to be 0.3675 times of the standard deviation brings the best performance. For the second case, the service network design is extended with a pilot scheduling layer and simulation is undertaken to compare the autonomous (pilot-less) and piloted service design. The results suggest that an autonomous air metro service would be preferable if the price of an autonomous aircraft is less than 1.6 times the price of a human-driven one. The results for rolling horizon optimisation suggest to confirm the actual demand at least 45 minutes prior to departure. Based on data from the Sydney (Australia) region, the thesis provides information directly relevant for the service network design of emerging modes of air transport in the city
    • …
    corecore