64,126 research outputs found

    Synthesis of Parametric Programs using Genetic Programming and Model Checking

    Get PDF
    Formal methods apply algorithms based on mathematical principles to enhance the reliability of systems. It would only be natural to try to progress from verification, model checking or testing a system against its formal specification into constructing it automatically. Classical algorithmic synthesis theory provides interesting algorithms but also alarming high complexity and undecidability results. The use of genetic programming, in combination with model checking and testing, provides a powerful heuristic to synthesize programs. The method is not completely automatic, as it is fine tuned by a user that sets up the specification and parameters. It also does not guarantee to always succeed and converge towards a solution that satisfies all the required properties. However, we applied it successfully on quite nontrivial examples and managed to find solutions to hard programming challenges, as well as to improve and to correct code. We describe here several versions of our method for synthesizing sequential and concurrent systems.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    Using parametric set constraints for locating errors in CLP programs

    Full text link
    This paper introduces a framework of parametric descriptive directional types for constraint logic programming (CLP). It proposes a method for locating type errors in CLP programs and presents a prototype debugging tool. The main technique used is checking correctness of programs w.r.t. type specifications. The approach is based on a generalization of known methods for proving correctness of logic programs to the case of parametric specifications. Set-constraint techniques are used for formulating and checking verification conditions for (parametric) polymorphic type specifications. The specifications are expressed in a parametric extension of the formalism of term grammars. The soundness of the method is proved and the prototype debugging tool supporting the proposed approach is illustrated on examples. The paper is a substantial extension of the previous work by the same authors concerning monomorphic directional types.Comment: 64 pages, To appear in Theory and Practice of Logic Programmin

    Learning and Designing Stochastic Processes from Logical Constraints

    Get PDF
    Stochastic processes offer a flexible mathematical formalism to model and reason about systems. Most analysis tools, however, start from the premises that models are fully specified, so that any parameters controlling the system's dynamics must be known exactly. As this is seldom the case, many methods have been devised over the last decade to infer (learn) such parameters from observations of the state of the system. In this paper, we depart from this approach by assuming that our observations are {\it qualitative} properties encoded as satisfaction of linear temporal logic formulae, as opposed to quantitative observations of the state of the system. An important feature of this approach is that it unifies naturally the system identification and the system design problems, where the properties, instead of observations, represent requirements to be satisfied. We develop a principled statistical estimation procedure based on maximising the likelihood of the system's parameters, using recent ideas from statistical machine learning. We demonstrate the efficacy and broad applicability of our method on a range of simple but non-trivial examples, including rumour spreading in social networks and hybrid models of gene regulation

    IMITATOR II: A Tool for Solving the Good Parameters Problem in Timed Automata

    Full text link
    We present here Imitator II, a new version of Imitator, a tool implementing the "inverse method" for parametric timed automata: given a reference valuation of the parameters, it synthesizes a constraint such that, for any valuation satisfying this constraint, the system behaves the same as under the reference valuation in terms of traces, i.e., alternating sequences of locations and actions. Imitator II also implements the "behavioral cartography algorithm", allowing us to solve the following good parameters problem: find a set of valuations within a given bounded parametric domain for which the system behaves well. We present new features and optimizations of the tool, and give results of applications to various examples of asynchronous circuits and communication protocols.Comment: In Proceedings INFINITY 2010, arXiv:1010.611

    Parametric Schedulability Analysis of Fixed Priority Real-Time Distributed Systems

    Get PDF
    Parametric analysis is a powerful tool for designing modern embedded systems, because it permits to explore the space of design parameters, and to check the robustness of the system with respect to variations of some uncontrollable variable. In this paper, we address the problem of parametric schedulability analysis of distributed real-time systems scheduled by fixed priority. In particular, we propose two different approaches to parametric analysis: the first one is a novel technique based on classical schedulability analysis, whereas the second approach is based on model checking of Parametric Timed Automata (PTA). The proposed analytic method extends existing sensitivity analysis for single processors to the case of a distributed system, supporting preemptive and non-preemptive scheduling, jitters and unconstrained deadlines. Parametric Timed Automata are used to model all possible behaviours of a distributed system, and therefore it is a necessary and sufficient analysis. Both techniques have been implemented in two software tools, and they have been compared with classical holistic analysis on two meaningful test cases. The results show that the analytic method provides results similar to classical holistic analysis in a very efficient way, whereas the PTA approach is slower but covers the entire space of solutions.Comment: Submitted to ECRTS 2013 (http://ecrts.eit.uni-kl.de/ecrts13

    Non-parametric Bayesian modeling of complex networks

    Full text link
    Modeling structure in complex networks using Bayesian non-parametrics makes it possible to specify flexible model structures and infer the adequate model complexity from the observed data. This paper provides a gentle introduction to non-parametric Bayesian modeling of complex networks: Using an infinite mixture model as running example we go through the steps of deriving the model as an infinite limit of a finite parametric model, inferring the model parameters by Markov chain Monte Carlo, and checking the model's fit and predictive performance. We explain how advanced non-parametric models for complex networks can be derived and point out relevant literature

    Comment: Bayesian Checking of the Second Levels of Hierarchical Models

    Full text link
    Comment: Bayesian Checking of the Second Levels of Hierarchical Models [arXiv:0802.0743]Comment: Published in at http://dx.doi.org/10.1214/07-STS235A the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore