94 research outputs found

    Fixed-Parameter Tractability of Directed Multiway Cut Parameterized by the Size of the Cutset

    Full text link
    Given a directed graph GG, a set of kk terminals and an integer pp, the \textsc{Directed Vertex Multiway Cut} problem asks if there is a set SS of at most pp (nonterminal) vertices whose removal disconnects each terminal from all other terminals. \textsc{Directed Edge Multiway Cut} is the analogous problem where SS is a set of at most pp edges. These two problems indeed are known to be equivalent. A natural generalization of the multiway cut is the \emph{multicut} problem, in which we want to disconnect only a set of kk given pairs instead of all pairs. Marx (Theor. Comp. Sci. 2006) showed that in undirected graphs multiway cut is fixed-parameter tractable (FPT) parameterized by pp. Marx and Razgon (STOC 2011) showed that undirected multicut is FPT and directed multicut is W[1]-hard parameterized by pp. We complete the picture here by our main result which is that both \textsc{Directed Vertex Multiway Cut} and \textsc{Directed Edge Multiway Cut} can be solved in time 22O(p)nO(1)2^{2^{O(p)}}n^{O(1)}, i.e., FPT parameterized by size pp of the cutset of the solution. This answers an open question raised by Marx (Theor. Comp. Sci. 2006) and Marx and Razgon (STOC 2011). It follows from our result that \textsc{Directed Multicut} is FPT for the case of k=2k=2 terminal pairs, which answers another open problem raised in Marx and Razgon (STOC 2011)

    Directed Multicut with linearly ordered terminals

    Full text link
    Motivated by an application in network security, we investigate the following "linear" case of Directed Mutlicut. Let GG be a directed graph which includes some distinguished vertices t1,,tkt_1, \ldots, t_k. What is the size of the smallest edge cut which eliminates all paths from tit_i to tjt_j for all i<ji < j? We show that this problem is fixed-parameter tractable when parametrized in the cutset size pp via an algorithm running in O(4ppn4)O(4^p p n^4) time.Comment: 12 pages, 1 figur

    On Weighted Graph Separation Problems and Flow-Augmentation

    Get PDF
    One of the first application of the recently introduced technique of\emph{flow-augmentation} [Kim et al., STOC 2022] is a fixed-parameter algorithmfor the weighted version of \textsc{Directed Feedback Vertex Set}, a landmarkproblem in parameterized complexity. In this note we explore applicability offlow-augmentation to other weighted graph separation problems parameterized bythe size of the cutset. We show the following. -- In weighted undirected graphs\textsc{Multicut} is FPT, both in the edge- and vertex-deletion version. -- Theweighted version of \textsc{Group Feedback Vertex Set} is FPT, even with anoracle access to group operations. -- The weighted version of \textsc{DirectedSubset Feedback Vertex Set} is FPT. Our study reveals \textsc{DirectedSymmetric Multicut} as the next important graph separation problem whoseparameterized complexity remains unknown, even in the unweighted setting.<br

    Fixed-parameter tractability of multicut parameterized by the size of the cutset

    Get PDF
    Given an undirected graph GG, a collection {(s1,t1),...,(sk,tk)}\{(s_1,t_1),..., (s_k,t_k)\} of pairs of vertices, and an integer pp, the Edge Multicut problem ask if there is a set SS of at most pp edges such that the removal of SS disconnects every sis_i from the corresponding tit_i. Vertex Multicut is the analogous problem where SS is a set of at most pp vertices. Our main result is that both problems can be solved in time 2O(p3)...nO(1)2^{O(p^3)}... n^{O(1)}, i.e., fixed-parameter tractable parameterized by the size pp of the cutset in the solution. By contrast, it is unlikely that an algorithm with running time of the form f(p)...nO(1)f(p)... n^{O(1)} exists for the directed version of the problem, as we show it to be W[1]-hard parameterized by the size of the cutset

    Subset feedback vertex set is fixed parameter tractable

    Full text link
    The classical Feedback Vertex Set problem asks, for a given undirected graph G and an integer k, to find a set of at most k vertices that hits all the cycles in the graph G. Feedback Vertex Set has attracted a large amount of research in the parameterized setting, and subsequent kernelization and fixed-parameter algorithms have been a rich source of ideas in the field. In this paper we consider a more general and difficult version of the problem, named Subset Feedback Vertex Set (SUBSET-FVS in short) where an instance comes additionally with a set S ? V of vertices, and we ask for a set of at most k vertices that hits all simple cycles passing through S. Because of its applications in circuit testing and genetic linkage analysis SUBSET-FVS was studied from the approximation algorithms perspective by Even et al. [SICOMP'00, SIDMA'00]. The question whether the SUBSET-FVS problem is fixed-parameter tractable was posed independently by Kawarabayashi and Saurabh in 2009. We answer this question affirmatively. We begin by showing that this problem is fixed-parameter tractable when parametrized by |S|. Next we present an algorithm which reduces the given instance to 2^k n^O(1) instances with the size of S bounded by O(k^3), using kernelization techniques such as the 2-Expansion Lemma, Menger's theorem and Gallai's theorem. These two facts allow us to give a 2^O(k log k) n^O(1) time algorithm solving the Subset Feedback Vertex Set problem, proving that it is indeed fixed-parameter tractable.Comment: full version of a paper presented at ICALP'1

    Directed Multicut is W[1]-hard, Even for Four Terminal Pairs

    Get PDF
    We prove that Multicut in directed graphs, parameterized by the size of the cutset, is W[1]-hard and hence unlikely to be fixed-parameter tractable even if restricted to instances with only four terminal pairs. This negative result almost completely resolves one of the central open problems in the area of parameterized complexity of graph separation problems, posted originally by Marx and Razgon [SIAM J. Comput. 43(2):355-388 (2014)], leaving only the case of three terminal pairs open. Our gadget methodology allows us also to prove W[1]-hardness of the Steiner Orientation problem parameterized by the number of terminal pairs, resolving an open problem of Cygan, Kortsarz, and Nutov [SIAM J. Discrete Math. 27(3):1503-1513 (2013)].Comment: v2: Added almost tight ETH lower bound

    Fixed-Parameter Tractability of Multicut in Directed Acyclic Graphs

    Get PDF
    The Multicut problem, given a graph G, a set of terminal pairs T={(si,ti)  1ir}\mathcal{T}=\{(s_i,t_i)\ |\ 1\leq i\leq r\}, and an integer pp, asks whether one can find a cutset consisting of at most pp nonterminal vertices that separates all the terminal pairs, i.e., after removing the cutset, tit_i is not reachable from sis_i for each 1ir1\leq i\leq r. The fixed-parameter tractability of Multicut in undirected graphs, parameterized by the size of the cutset only, has been recently proved by Marx and Razgon [SIAM J. Comput., 43 (2014), pp. 355--388] and, independently, by Bousquet, Daligault, and Thomassé [Proceedings of STOC, ACM, 2011, pp. 459--468], after resisting attacks as a long-standing open problem. In this paper we prove that Multicut is fixed-parameter tractable on directed acyclic graphs when parameterized both by the size of the cutset and the number of terminal pairs. We complement this result by showing that this is implausible for parameterization by the size of the cutset only, as this version of the problem remains W[1]W[1]-hard
    corecore