308 research outputs found

    Development of Stresses in Cohesionless Poured Sand

    Full text link
    The pressure distribution beneath a conical sandpile, created by pouring sand from a point source onto a rough rigid support, shows a pronounced minimum below the apex (`the dip'). Recent work of the authors has attempted to explain this phenomenon by invoking local rules for stress propagation that depend on the local geometry, and hence on the construction history, of the medium. We discuss the fundamental difference between such approaches, which lead to hyperbolic differential equations, and elastoplastic models, for which the equations are elliptic within any elastic zones present .... This displacement field appears to be either ill-defined, or defined relative to a reference state whose physical existence is in doubt. Insofar as their predictions depend on physical factors unknown and outside experimental control, such elastoplastic models predict that the observations should be intrinsically irreproducible .... Our hyperbolic models are based instead on a physical picture of the material, in which (a) the load is supported by a skeletal network of force chains ("stress paths") whose geometry depends on construction history; (b) this network is `fragile' or marginally stable, in a sense that we define. .... We point out that our hyperbolic models can nonetheless be reconciled with elastoplastic ideas by taking the limit of an extremely anisotropic yield condition.Comment: 25 pages, latex RS.tex with rspublic.sty, 7 figures in Rsfig.ps. Philosophical Transactions A, Royal Society, submitted 02/9

    Stress Propagation and Arching in Static Sandpiles

    Full text link
    We present a new approach to the modelling of stress propagation in static granular media, focussing on the conical sandpile constructed from a point source. We view the medium as consisting of cohesionless hard particles held up by static frictional forces; these are subject to microscopic indeterminacy which corresponds macroscopically to the fact that the equations of stress continuity are incomplete -- no strain variable can be defined. We propose that in general the continuity equations should be closed by means of a constitutive relation (or relations) between different components of the (mesoscopically averaged) stress tensor. The primary constitutive relation relates radial and vertical shear and normal stresses (in two dimensions, this is all one needs). We argue that the constitutive relation(s) should be local, and should encode the construction history of the pile: this history determines the organization of the grains at a mesoscopic scale, and thereby the local relationship between stresses. To the accuracy of published experiments, the pattern of stresses beneath a pile shows a scaling between piles of different heights (RSF scaling) which severely limits the form the constitutive relation can take ...Comment: 38 pages, 24 Postscript figures, LATEX, minor misspellings corrected, Journal de Physique I, Ref. Nr. 6.1125, accepte

    Multipoint correlators in the Abelian sandpile model

    Full text link
    We revisit the calculation of height correlations in the two-dimensional Abelian sandpile model by taking advantage of a technique developed recently by Kenyon and Wilson. The formalism requires to equip the usual graph Laplacian, ubiquitous in the context of cycle-rooted spanning forests, with a complex connection. In the case at hand, the connection is constant and localized along a semi-infinite defect line (zipper). In the appropriate limit of a trivial connection, it allows one to count spanning forests whose components contain prescribed sites, which are of direct relevance for height correlations in the sandpile model. Using this technique, we first rederive known 1- and 2-site lattice correlators on the plane and upper half-plane, more efficiently than what has been done so far. We also compute explicitly the (new) next-to-leading order in the distances (r−4r^{-4} for 1-site on the upper half-plane, r−6r^{-6} for 2-site on the plane). We extend these results by computing new correlators involving one arbitrary height and a few heights 1 on the plane and upper half-plane, for the open and closed boundary conditions. We examine our lattice results from the conformal point of view, and confirm the full consistency with the specific features currently conjectured to be present in the associated logarithmic conformal field theory.Comment: 60 pages, 21 figures. v2: reformulation of the grove theorem, minor correction

    Absorbing-state phase transitions in fixed-energy sandpiles

    Get PDF
    We study sandpile models as closed systems, with conserved energy density ζ\zeta playing the role of an external parameter. The critical energy density, ζc\zeta_c, marks a nonequilibrium phase transition between active and absorbing states. Several fixed-energy sandpiles are studied in extensive simulations of stationary and transient properties, as well as the dynamics of roughening in an interface-height representation. Our primary goal is to identify the universality classes of such models, in hopes of assessing the validity of two recently proposed approaches to sandpiles: a phenomenological continuum Langevin description with absorbing states, and a mapping to driven interface dynamics in random media. Our results strongly suggest that there are at least three distinct universality classes for sandpiles.Comment: 41 pages, 23 figure
    • …
    corecore