144 research outputs found

    Queue Dynamics With Window Flow Control

    Get PDF
    This paper develops a new model that describes the queueing process of a communication network when data sources use window flow control. The model takes into account the burstiness in sub-round-trip time (RTT) timescales and the instantaneous rate differences of a flow at different links. It is generic and independent of actual source flow control algorithms. Basic properties of the model and its relation to existing work are discussed. In particular, for a general network with multiple links, it is demonstrated that spatial interaction of oscillations allows queue instability to occur even when all flows have the same RTTs and maintain constant windows. The model is used to study the dynamics of delay-based congestion control algorithms. It is found that the ratios of RTTs are critical to the stability of such systems, and previously unknown modes of instability are identified. Packet-level simulations and testbed measurements are provided to verify the model and its predictions

    A novel queue-aware wireless link adaptation mechanism and its fixed-point analytical model

    Get PDF
    A point-to-point (PTP) wireless link is studied that carries long-lived TCP flows and is controlled with active queue management (AQM). A cross-layer queue-aware adaptive modulation and coding (AMC)-based link adaptation (LA) mechanism is proposed for this wireless link to improve the TCP-level throughput relative to the case where AMC decisions are made based solely on the physical layer (PHY) parameters. The proposed simple-to-implement LA mechanism involves the use of an aggressive modulation and coding scheme (MCS) with high spectral efficiency and high block error rates when the queue occupancy exceeds a certain threshold, but otherwise a relatively conservative MCS with lower spectral efficiency and lower block error rates. A fixed-point analytical model is proposed to obtain the aggregate TCP throughput attained at this wireless link and the model is validated by ns-3 simulations. Numerical experimentation with the proposed analytical model applied to an IEEE 802.16-based wireless link demonstrates the effectiveness of the proposed queue-aware LA (QAWLA) mechanism in a wide variety of scenarios including cases where the channel information is imperfect. The impact of the choice of the queue occupancy threshold of QAWLA is extensively studied with respect to the choice of AQM parameters in order to provide engineering guidelines for the provisioning of the wireless link. © 2015, Ozturk and Akar

    Downstream Bandwidth Management for Emerging DOCSIS-based Networks

    Get PDF
    In this dissertation, we consider the downstream bandwidth management in the context of emerging DOCSIS-based cable networks. The latest DOCSIS 3.1 standard for cable access networks represents a significant change to cable networks. For downstream, the current 6 MHz channel size is replaced by a much larger 192 MHz channel which potentially can provide data rates up to 10 Gbps. Further, the current standard requires equipment to support a relatively new form of active queue management (AQM) referred to as delay-based AQM. Given that more than 50 million households (and climbing) use cable for Internet access, a clear understanding of the impacts of bandwidth management strategies used in these emerging networks is crucial. Further, given the scope of the change provided by emerging cable systems, now is the time to develop and introduce innovative new methods for managing bandwidth. With this motivation, we address research questions pertaining to next generation of cable access networks. The cable industry has had to deal with the problem of a small number of subscribers who utilize the majority of network resources. This problem will grow as access rates increase to gigabits per second. Fundamentally this is a problem on how to manage data flows in a fair manner and provide protection. A well known performance issue in the Internet, referred to as bufferbloat, has received significant attention recently. High throughput network flows need sufficiently large buffer to keep the pipe full and absorb occasional burstiness. Standard practice however has led to equipment offering very large unmanaged buffers that can result in sustained queue levels increasing packet latency. One reason why these problems continue to plague cable access networks is the desire for low complexity and easily explainable (to access network subscribers and to the Federal Communications Commission) bandwidth management. This research begins by evaluating modern delay-based AQM algorithms in downstream DOCSIS 3.0 environments with a focus on fairness and application performance capabilities of single queue AQMs. We are especially interested in delay-based AQM schemes that have been proposed to combat the bufferbloat problem. Our evaluation involves a variety of scenarios that include tiered services and application workloads. Based on our results, we show that in scenarios involving realistic workloads, modern delay-based AQMs can effectively mitigate bufferbloat. However they do not address the other problem related to managing the fairness. To address the combined problem of fairness and bufferbloat, we propose a novel approach to bandwidth management that provides a compromise among the conflicting requirements. We introduce a flow quantization method referred to as adaptive bandwidth binning where flows that are observed to consume similar levels of bandwidth are grouped together with the system managed through a hierarchical scheduler designed to approximate weighted fairness while addressing bufferbloat. Based on a simulation study that considers many system experimental parameters including workloads and network configurations, we provide evidence of the efficacy of the idea. Our results suggest that the scheme is able to provide long term fairness and low delay with a performance close to that of a reference approach based on fair queueing. A further contribution is our idea for replacing `tiered\u27 levels of service based on service rates with tiering based on weights. The application of our bandwidth binning scheme offers a timely and innovative alternative to broadband service that leverages the potential offered by emerging DOCSIS-based cable systems

    Modeling and estimation techniques for understanding heterogeneous traffic behavior

    Get PDF
    The majority of current internet traffic is based on TCP. With the emergence of new applications, especially new multimedia applications, however, UDP-based traffic is expected to increase. Furthermore, multimedia applications have sparkled the development of protocols responding to congestion while behaving differently from TCP. As a result, network traffc is expected to become more and more diverse. The increasing link capacity further stimulates new applications utilizing higher bandwidths of future. Besides the traffic diversity, the network is also evolving around new technologies. These trends in the Internet motivate our research work. In this dissertation, modeling and estimation techniques of heterogeneous traffic at a router are presented. The idea of the presented techniques is that if the observed queue length and packet drop probability do not match the predictions from a model of responsive (TCP) traffic, then the error must come from non-responsive traffic; it can then be used for estimating the proportion of non-responsive traffic. The proposed scheme is based on the queue length history, packet drop history, expected TCP and queue dynamics. The effectiveness of the proposed techniques over a wide range of traffic scenarios is corroborated using NS-2 based simulations. Possible applications based on the estimation technique are discussed. The implementation of the estimation technique in the Linux kernel is presented in order to validate our estimation technique in a realistic network environment

    Understanding CHOKe: throughput and spatial characteristics

    Get PDF
    A recently proposed active queue management, CHOKe, is stateless, simple to implement, yet surprisingly effective in protecting TCP from UDP flows. We present an equilibrium model of TCP/CHOKe. We prove that, provided the number of TCP flows is large, the UDP bandwidth share peaks at (e+1)/sup -1/=0.269 when UDP input rate is slightly larger than link capacity, and drops to zero as UDP input rate tends to infinity. We clarify the spatial characteristics of the leaky buffer under CHOKe that produce this throughput behavior. Specifically, we prove that, as UDP input rate increases, even though the total number of UDP packets in the queue increases, their spatial distribution becomes more and more concentrated near the tail of the queue, and drops rapidly to zero toward the head of the queue. In stark contrast to a nonleaky FIFO buffer where UDP bandwidth shares would approach 1 as its input rate increases without bound, under CHOKe, UDP simultaneously maintains a large number of packets in the queue and receives a vanishingly small bandwidth share, the mechanism through which CHOKe protects TCP flows

    iRED: A disaggregated P4-AQM fully implemented in programmable data plane hardware

    Full text link
    Routers employ queues to temporarily hold packets when the scheduler cannot immediately process them. Congestion occurs when the arrival rate of packets exceeds the processing capacity, leading to increased queueing delay. Over time, Active Queue Management (AQM) strategies have focused on directly draining packets from queues to alleviate congestion and reduce queuing delay. On Programmable Data Plane (PDP) hardware, AQMs traditionally reside in the Egress pipeline due to the availability of queue delay information there. We argue that this approach wastes the router's resources because the dropped packet has already consumed the entire pipeline of the device. In this work, we propose ingress Random Early Detection (iRED), a more efficient approach that addresses the Egress drop problem. iRED is a disaggregated P4-AQM fully implemented in programmable data plane hardware and also supports Low Latency, Low Loss, and Scalable Throughput (L4S) framework, saving device pipeline resources by dropping packets in the Ingress block. To evaluate iRED, we conducted three experiments using a Tofino2 programmable switch: i) An in-depth analysis of state-of-the-art AQMs on PDP hardware, using 12 different network configurations varying in bandwidth, Round-Trip Time (RTT), and Maximum Transmission Unit (MTU). The results demonstrate that iRED can significantly reduce router resource consumption, with up to a 10x reduction in memory usage, 12x fewer processing cycles, and 8x less power consumption for the same traffic load; ii) A performance evaluation regarding the L4S framework. The results prove that iRED achieves fairness in bandwidth usage for different types of traffic (classic and scalable); iii) A comprehensive analysis of the QoS in a real setup of a DASH) technology. iRED demonstrated up to a 2.34x improvement in FPS and a 4.77x increase in the video player buffer fill.Comment: Preprint (TNSM under review

    Asymptotic Approximations for TCP Compound

    Full text link
    In this paper, we derive an approximation for throughput of TCP Compound connections under random losses. Throughput expressions for TCP Compound under a deterministic loss model exist in the literature. These are obtained assuming the window sizes are continuous, i.e., a fluid behaviour is assumed. We validate this model theoretically. We show that under the deterministic loss model, the TCP window evolution for TCP Compound is periodic and is independent of the initial window size. We then consider the case when packets are lost randomly and independently of each other. We discuss Markov chain models to analyze performance of TCP in this scenario. We use insights from the deterministic loss model to get an appropriate scaling for the window size process and show that these scaled processes, indexed by p, the packet error rate, converge to a limit Markov chain process as p goes to 0. We show the existence and uniqueness of the stationary distribution for this limit process. Using the stationary distribution for the limit process, we obtain approximations for throughput, under random losses, for TCP Compound when packet error rates are small. We compare our results with ns2 simulations which show a good match.Comment: Longer version for NCC 201
    corecore