24,502 research outputs found

    Discrete logarithms in curves over finite fields

    Get PDF
    A survey on algorithms for computing discrete logarithms in Jacobians of curves over finite fields

    Discrete logarithm computations over finite fields using Reed-Solomon codes

    Get PDF
    Cheng and Wan have related the decoding of Reed-Solomon codes to the computation of discrete logarithms over finite fields, with the aim of proving the hardness of their decoding. In this work, we experiment with solving the discrete logarithm over GF(q^h) using Reed-Solomon decoding. For fixed h and q going to infinity, we introduce an algorithm (RSDL) needing O (h! q^2) operations over GF(q), operating on a q x q matrix with (h+2) q non-zero coefficients. We give faster variants including an incremental version and another one that uses auxiliary finite fields that need not be subfields of GF(q^h); this variant is very practical for moderate values of q and h. We include some numerical results of our first implementations

    Quantum resource estimates for computing elliptic curve discrete logarithms

    Get PDF
    We give precise quantum resource estimates for Shor's algorithm to compute discrete logarithms on elliptic curves over prime fields. The estimates are derived from a simulation of a Toffoli gate network for controlled elliptic curve point addition, implemented within the framework of the quantum computing software tool suite LIQUiUi|\rangle. We determine circuit implementations for reversible modular arithmetic, including modular addition, multiplication and inversion, as well as reversible elliptic curve point addition. We conclude that elliptic curve discrete logarithms on an elliptic curve defined over an nn-bit prime field can be computed on a quantum computer with at most 9n+2log2(n)+109n + 2\lceil\log_2(n)\rceil+10 qubits using a quantum circuit of at most 448n3log2(n)+4090n3448 n^3 \log_2(n) + 4090 n^3 Toffoli gates. We are able to classically simulate the Toffoli networks corresponding to the controlled elliptic curve point addition as the core piece of Shor's algorithm for the NIST standard curves P-192, P-224, P-256, P-384 and P-521. Our approach allows gate-level comparisons to recent resource estimates for Shor's factoring algorithm. The results also support estimates given earlier by Proos and Zalka and indicate that, for current parameters at comparable classical security levels, the number of qubits required to tackle elliptic curves is less than for attacking RSA, suggesting that indeed ECC is an easier target than RSA.Comment: 24 pages, 2 tables, 11 figures. v2: typos fixed and reference added. ASIACRYPT 201

    A kilobit hidden SNFS discrete logarithm computation

    Get PDF
    We perform a special number field sieve discrete logarithm computation in a 1024-bit prime field. To our knowledge, this is the first kilobit-sized discrete logarithm computation ever reported for prime fields. This computation took a little over two months of calendar time on an academic cluster using the open-source CADO-NFS software. Our chosen prime pp looks random, and p1p--1 has a 160-bit prime factor, in line with recommended parameters for the Digital Signature Algorithm. However, our p has been trapdoored in such a way that the special number field sieve can be used to compute discrete logarithms in F_p\mathbb{F}\_p^* , yet detecting that p has this trapdoor seems out of reach. Twenty-five years ago, there was considerable controversy around the possibility of back-doored parameters for DSA. Our computations show that trapdoored primes are entirely feasible with current computing technology. We also describe special number field sieve discrete log computations carried out for multiple weak primes found in use in the wild. As can be expected from a trapdoor mechanism which we say is hard to detect, our research did not reveal any trapdoored prime in wide use. The only way for a user to defend against a hypothetical trapdoor of this kind is to require verifiably random primes

    Scale Invariance + Unitarity => Conformal Invariance?

    Full text link
    We revisit the long-standing conjecture that in unitary field theories, scale invariance implies conformality. We explain why the Zamolodchikov-Polchinski proof in D=2 does not work in higher dimensions. We speculate which new ideas might be helpful in a future proof. We also search for possible counterexamples. We consider a general multi-field scalar-fermion theory with quartic and Yukawa interactions. We show that there are no counterexamples among fixed points of such models in 4-epsilon dimensions. We also discuss fake counterexamples, which exist among theories without a stress tensor.Comment: 17p

    On the discrete logarithm problem in finite fields of fixed characteristic

    Get PDF
    For qq a prime power, the discrete logarithm problem (DLP) in Fq\mathbb{F}_{q} consists in finding, for any gFq×g \in \mathbb{F}_{q}^{\times} and hgh \in \langle g \rangle, an integer xx such that gx=hg^x = h. We present an algorithm for computing discrete logarithms with which we prove that for each prime pp there exist infinitely many explicit extension fields Fpn\mathbb{F}_{p^n} in which the DLP can be solved in expected quasi-polynomial time. Furthermore, subject to a conjecture on the existence of irreducible polynomials of a certain form, the algorithm solves the DLP in all extensions Fpn\mathbb{F}_{p^n} in expected quasi-polynomial time.Comment: 15 pages, 2 figures. To appear in Transactions of the AM
    corecore