21,439 research outputs found

    On Generalized Dislocated Quasi Metrics

    Get PDF
    The notion of dislocated quasi metric is a generalization of metric that retains, an analogue of the illustrious Banach's Contraction principle and has useful applications in the semantic analysis of logic programming. In this paper we introduce the concept of generalized dislocated quasi metric space.The purpose of this note is to study topological properties of a metric, its connection with generalized dislocated metric space and to derive some fixed point theorems. Keywords: Generalized dislocated metric, Generalized dislocated quasi metric, Contractive conditions, coincidence point, b-property

    Proof Outlines as Proof Certificates: A System Description

    Get PDF
    We apply the foundational proof certificate (FPC) framework to the problem of designing high-level outlines of proofs. The FPC framework provides a means to formally define and check a wide range of proof evidence. A focused proof system is central to this framework and such a proof system provides an interesting approach to proof reconstruction during the process of proof checking (relying on an underlying logic programming implementation). Here, we illustrate how the FPC framework can be used to design proof outlines and then to exploit proof checkers as a means for expanding outlines into fully detailed proofs. In order to validate this approach to proof outlines, we have built the ACheck system that allows us to take a sequence of theorems and apply the proof outline "do the obvious induction and close the proof using previously proved lemmas".Comment: In Proceedings WoF'15, arXiv:1511.0252

    A framework for proof certificates in finite state exploration

    Get PDF
    Model checkers use automated state exploration in order to prove various properties such as reachability, non-reachability, and bisimulation over state transition systems. While model checkers have proved valuable for locating errors in computer models and specifications, they can also be used to prove properties that might be consumed by other computational logic systems, such as theorem provers. In such a situation, a prover must be able to trust that the model checker is correct. Instead of attempting to prove the correctness of a model checker, we ask that it outputs its "proof evidence" as a formally defined document--a proof certificate--and that this document is checked by a trusted proof checker. We describe a framework for defining and checking proof certificates for a range of model checking problems. The core of this framework is a (focused) proof system that is augmented with premises that involve "clerk and expert" predicates. This framework is designed so that soundness can be guaranteed independently of any concerns for the correctness of the clerk and expert specifications. To illustrate the flexibility of this framework, we define and formally check proof certificates for reachability and non-reachability in graphs, as well as bisimulation and non-bisimulation for labeled transition systems. Finally, we describe briefly a reference checker that we have implemented for this framework.Comment: In Proceedings PxTP 2015, arXiv:1507.0837

    Dual-Context Calculi for Modal Logic

    Get PDF
    We present natural deduction systems and associated modal lambda calculi for the necessity fragments of the normal modal logics K, T, K4, GL and S4. These systems are in the dual-context style: they feature two distinct zones of assumptions, one of which can be thought as modal, and the other as intuitionistic. We show that these calculi have their roots in in sequent calculi. We then investigate their metatheory, equip them with a confluent and strongly normalizing notion of reduction, and show that they coincide with the usual Hilbert systems up to provability. Finally, we investigate a categorical semantics which interprets the modality as a product-preserving functor.Comment: Full version of article previously presented at LICS 2017 (see arXiv:1602.04860v4 or doi: 10.1109/LICS.2017.8005089
    • …
    corecore