1,096 research outputs found

    On the Generating Power of Regularly Controlled Bidirectional Grammars

    Get PDF
    RCB-grammars or regularly controlled bidirectional grammars are context-free grammars of which the rules can be used in a productive and in a reductive fashion. In addition, the application of these rules is controlled by a regular language. Several modes of derivation can be distinguished for this kind of grammar. In this paper the generating power of the derivation mode that uses right-occurrence rewriting (RO-mode) is determined. Furthermore, a new mode called RA is introduced, which is a better formalization of the intuitive idea of right-occurrence rewriting than the RO-mode. The RO- and RA-mode have the same generating power, viz. the corresponding RCB-grammars both generate the recursively enumerable languages. Consequently, providing RCB/RO-grammars with a time bound results in a less powerful grammar model

    On the generating power of regularly controlled bidirection grammars

    Get PDF
    RCB-grammars or regularly controlled bidirectional grammars are context-free grammars of which the rules can be used in a productive and in a reductive fashion. In addition, the application of these\ud rules is controlled by a regular language. Several modes of derivation can be distinguished for this kind of grammar. In this paper the generating power of the derivation mode that uses right-occurrence rewriting (RO-mode) is determined. Furthermore, a new mode called RA is introduced, which is a better formalization of the intuitive idea of rightoccurrence rewriting than the RO-mode. The RO- and RA-mode have the same generating power, viz. the corresponding RCB-grammars both generate the recursively enumerable languages. Consequently, providing RCB/RO-grammars with a time bound results in a less powerful grammar model

    A Second Step Towards Complexity-Theoretic Analogs of Rice's Theorem

    Get PDF
    Rice's Theorem states that every nontrivial language property of the recursively enumerable sets is undecidable. Borchert and Stephan initiated the search for complexity-theoretic analogs of Rice's Theorem. In particular, they proved that every nontrivial counting property of circuits is UP-hard, and that a number of closely related problems are SPP-hard. The present paper studies whether their UP-hardness result itself can be improved to SPP-hardness. We show that their UP-hardness result cannot be strengthened to SPP-hardness unless unlikely complexity class containments hold. Nonetheless, we prove that every P-constructibly bi-infinite counting property of circuits is SPP-hard. We also raise their general lower bound from unambiguous nondeterminism to constant-ambiguity nondeterminism.Comment: 14 pages. To appear in Theoretical Computer Scienc

    Complete Symmetry in D2L Systems and Cellular Automata

    Get PDF
    We introduce completely symmetric D2L systems and cellular automata by means of an additional restriction on the corresponding symmetric devices. Then we show that completely symmetric D2L systems and cellular automata are still able to simulate Turing machine computations. As corollaries we obtain new characterizations of the recursively enumerable languages and of some space-bounded complexity classes

    Complexity of equivalence relations and preorders from computability theory

    Full text link
    We study the relative complexity of equivalence relations and preorders from computability theory and complexity theory. Given binary relations R,SR, S, a componentwise reducibility is defined by R\le S \iff \ex f \, \forall x, y \, [xRy \lra f(x) Sf(y)]. Here ff is taken from a suitable class of effective functions. For us the relations will be on natural numbers, and ff must be computable. We show that there is a Π1\Pi_1-complete equivalence relation, but no Πk\Pi k-complete for k2k \ge 2. We show that Σk\Sigma k preorders arising naturally in the above-mentioned areas are Σk\Sigma k-complete. This includes polynomial time mm-reducibility on exponential time sets, which is Σ2\Sigma 2, almost inclusion on r.e.\ sets, which is Σ3\Sigma 3, and Turing reducibility on r.e.\ sets, which is Σ4\Sigma 4.Comment: To appear in J. Symb. Logi

    On purely morphic characterizations of context-free languages

    Get PDF
    AbstractIn this paper we show the following: For any λ-free context-free language L there effectively exist a weak coding g, a homomorphism h such that L=gh−1 (∣cD2), where D2 is the Dyck set over a two-letter alphabet. As an immediate corollary it follows that for any λ-free context-free language L there exist a weak coding g and a mapping F such that L=gF−1(∣c)

    A Chomsky-Schützenberger-Stanley type characterization of the class of slender context-free languages

    Get PDF
    Slender context-free languages have a complete algebraic characterization by L. Ilie in [13]. In this paper we give another characterization of this class of languages. In particular, using linear Dyck languages instead of unrestricted ones, we obtain a Chomsky-Schützenberger-Stanley type characterization of slender context-free languages
    corecore