506 research outputs found

    Fixed parameter tractability of crossing minimization of almost-trees

    Full text link
    We investigate exact crossing minimization for graphs that differ from trees by a small number of additional edges, for several variants of the crossing minimization problem. In particular, we provide fixed parameter tractable algorithms for the 1-page book crossing number, the 2-page book crossing number, and the minimum number of crossed edges in 1-page and 2-page book drawings.Comment: Graph Drawing 201

    Crossing Minimization for 1-page and 2-page Drawings of Graphs with Bounded Treewidth

    Full text link
    We investigate crossing minimization for 1-page and 2-page book drawings. We show that computing the 1-page crossing number is fixed-parameter tractable with respect to the number of crossings, that testing 2-page planarity is fixed-parameter tractable with respect to treewidth, and that computing the 2-page crossing number is fixed-parameter tractable with respect to the sum of the number of crossings and the treewidth of the input graph. We prove these results via Courcelle's theorem on the fixed-parameter tractability of properties expressible in monadic second order logic for graphs of bounded treewidth.Comment: Graph Drawing 201

    Metro-Line Crossing Minimization: Hardness, Approximations, and Tractable Cases

    Full text link
    Crossing minimization is one of the central problems in graph drawing. Recently, there has been an increased interest in the problem of minimizing crossings between paths in drawings of graphs. This is the metro-line crossing minimization problem (MLCM): Given an embedded graph and a set L of simple paths, called lines, order the lines on each edge so that the total number of crossings is minimized. So far, the complexity of MLCM has been an open problem. In contrast, the problem variant in which line ends must be placed in outermost position on their edges (MLCM-P) is known to be NP-hard. Our main results answer two open questions: (i) We show that MLCM is NP-hard. (ii) We give an O(logL)O(\sqrt{\log |L|})-approximation algorithm for MLCM-P

    Grid Recognition: Classical and Parameterized Computational Perspectives

    Get PDF
    Grid graphs, and, more generally, k×rk\times r grid graphs, form one of the most basic classes of geometric graphs. Over the past few decades, a large body of works studied the (in)tractability of various computational problems on grid graphs, which often yield substantially faster algorithms than general graphs. Unfortunately, the recognition of a grid graph is particularly hard -- it was shown to be NP-hard even on trees of pathwidth 3 already in 1987. Yet, in this paper, we provide several positive results in this regard in the framework of parameterized complexity (additionally, we present new and complementary hardness results). Specifically, our contribution is threefold. First, we show that the problem is fixed-parameter tractable (FPT) parameterized by k+mcck+\mathsf {mcc} where mcc\mathsf{mcc} is the maximum size of a connected component of GG. This also implies that the problem is FPT parameterized by td+k\mathtt{td}+k where td\mathtt{td} is the treedepth of GG (to be compared with the hardness for pathwidth 2 where k=3k=3). Further, we derive as a corollary that strip packing is FPT with respect to the height of the strip plus the maximum of the dimensions of the packed rectangles, which was previously only known to be in XP. Second, we present a new parameterization, denoted aGa_G, relating graph distance to geometric distance, which may be of independent interest. We show that the problem is para-NP-hard parameterized by aGa_G, but FPT parameterized by aGa_G on trees, as well as FPT parameterized by k+aGk+a_G. Third, we show that the recognition of k×rk\times r grid graphs is NP-hard on graphs of pathwidth 2 where k=3k=3. Moreover, when kk and rr are unrestricted, we show that the problem is NP-hard on trees of pathwidth 2, but trivially solvable in polynomial time on graphs of pathwidth 1

    Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal

    Full text link
    The Odd Cycle Transversal problem (OCT) asks whether a given graph can be made bipartite by deleting at most kk of its vertices. In a breakthrough result Reed, Smith, and Vetta (Operations Research Letters, 2004) gave a \BigOh(4^kkmn) time algorithm for it, the first algorithm with polynomial runtime of uniform degree for every fixed kk. It is known that this implies a polynomial-time compression algorithm that turns OCT instances into equivalent instances of size at most \BigOh(4^k), a so-called kernelization. Since then the existence of a polynomial kernel for OCT, i.e., a kernelization with size bounded polynomially in kk, has turned into one of the main open questions in the study of kernelization. This work provides the first (randomized) polynomial kernelization for OCT. We introduce a novel kernelization approach based on matroid theory, where we encode all relevant information about a problem instance into a matroid with a representation of size polynomial in kk. For OCT, the matroid is built to allow us to simulate the computation of the iterative compression step of the algorithm of Reed, Smith, and Vetta, applied (for only one round) to an approximate odd cycle transversal which it is aiming to shrink to size kk. The process is randomized with one-sided error exponentially small in kk, where the result can contain false positives but no false negatives, and the size guarantee is cubic in the size of the approximate solution. Combined with an \BigOh(\sqrt{\log n})-approximation (Agarwal et al., STOC 2005), we get a reduction of the instance to size \BigOh(k^{4.5}), implying a randomized polynomial kernelization.Comment: Minor changes to agree with SODA 2012 version of the pape

    Analogies between the crossing number and the tangle crossing number

    Full text link
    Tanglegrams are special graphs that consist of a pair of rooted binary trees with the same number of leaves, and a perfect matching between the two leaf-sets. These objects are of use in phylogenetics and are represented with straightline drawings where the leaves of the two plane binary trees are on two parallel lines and only the matching edges can cross. The tangle crossing number of a tanglegram is the minimum crossing number over all such drawings and is related to biologically relevant quantities, such as the number of times a parasite switched hosts. Our main results for tanglegrams which parallel known theorems for crossing numbers are as follows. The removal of a single matching edge in a tanglegram with nn leaves decreases the tangle crossing number by at most n3n-3, and this is sharp. Additionally, if γ(n)\gamma(n) is the maximum tangle crossing number of a tanglegram with nn leaves, we prove 12(n2)(1o(1))γ(n)<12(n2)\frac{1}{2}\binom{n}{2}(1-o(1))\le\gamma(n)<\frac{1}{2}\binom{n}{2}. Further, we provide an algorithm for computing non-trivial lower bounds on the tangle crossing number in O(n4)O(n^4) time. This lower bound may be tight, even for tanglegrams with tangle crossing number Θ(n2)\Theta(n^2).Comment: 13 pages, 6 figure

    Theoretical and algorithmic approaches to field-programmable gate array partitioning

    Get PDF
    Many practical problems dealing with the design of Very Large Scale Integrated (VLSI) circuits can be modeled as graphs in which vertices represent components of the circuit and edges represent a relationship between these components. When expressed as graphs, these problems can then often be solved using graph theoretic methods. Unfortunately, many such problems are NP-complete, hence no practical exact solutions are known to exist. In this dissertation, we study NP-complete problems taken from the realm of partitioning for Field-Programmable Gate Arrays (FPGAs). We adopt a two-pronged approach of theory and practice, developing practical heuristics driven by theoretical study. The theoretical approach is motivated by well-quasi-order (WQO) theory, which can be used to show, among other things, that when some hard problems have fixed parameters, polynomial-time solutions exist. This is of significance in the area of FPGA partitioning, in which practical problems are often characterized by fixed parameter instances. WQO techniques are not generally practical, however, and we develop new methods to solve several important problems in VLSI that are not even amenable to WQO techniques. We begin with a representative partitioning problem, Min Degree Graph Partition (MDGP), the fixed-parameter version of which is closed under the immersion order. \Ve show that the obstruction set ( set of immersion minimal elements) for this problem is computable; we prove both upper and lower bounds on the obstruction set size; and we completely characterize all fixed-parameter MDGP simple tree obstructions. WQO theory tells us only that fixed-parameter MDGP is solvable in (high-degree) polynomial time. We attack the problem using what we refer to as kd-candidate subsets, culminating in linear-time decision and search algorithms. The kd-candidate subset method also paves the way for an efficient heuristic for the FPGA Minimization problem. We then broaden our scope to incorporate delay minimization into FPGA partitioning. We develop, analyze and test a novel method called critical path compression, inspired in part by compiler optimization techniques. We then look at a variety of generalizations of MDGP. Some of these problems are not immersion closed; others are not even defined in a way that WQO theory applies. However, almost all of them are efficiently solvable via the kd-candidate subset approach. Interspersed in these results are many refinements of what is known about the complexity of these problems. We also discuss a few other solution strategies, and present many open problems

    Computational Complexity for Physicists

    Full text link
    These lecture notes are an informal introduction to the theory of computational complexity and its links to quantum computing and statistical mechanics.Comment: references updated, reprint available from http://itp.nat.uni-magdeburg.de/~mertens/papers/complexity.shtm
    corecore