1,873 research outputs found

    Eye Tracking: A Perceptual Interface for Content Based Image Retrieval

    Get PDF
    In this thesis visual search experiments are devised to explore the feasibility of an eye gaze driven search mechanism. The thesis first explores gaze behaviour on images possessing different levels of saliency. Eye behaviour was predominantly attracted by salient locations, but appears to also require frequent reference to non-salient background regions which indicated that information from scan paths might prove useful for image search. The thesis then specifically investigates the benefits of eye tracking as an image retrieval interface in terms of speed relative to selection by mouse, and in terms of the efficiency of eye tracking mechanisms in the task of retrieving target images. Results are analysed using ANOVA and significant findings are discussed. Results show that eye selection was faster than a computer mouse and experience gained during visual tasks carried out using a mouse would benefit users if they were subsequently transferred to an eye tracking system. Results on the image retrieval experiments show that users are able to navigate to a target image within a database confirming the feasibility of an eye gaze driven search mechanism. Additional histogram analysis of the fixations, saccades and pupil diameters in the human eye movement data revealed a new method of extracting intentions from gaze behaviour for image search, of which the user was not aware and promises even quicker search performances. The research has two implications for Content Based Image Retrieval: (i) improvements in query formulation for visual search and (ii) new methods for visual search using attentional weighting. Futhermore it was demonstrated that users are able to find target images at sufficient speeds indicating that pre-attentive activity is playing a role in visual search. A current review of eye tracking technology, current applications, visual perception research, and models of visual attention is discussed. A review of the potential of the technology for commercial exploitation is also presented

    A Review and Analysis of Eye-Gaze Estimation Systems, Algorithms and Performance Evaluation Methods in Consumer Platforms

    Full text link
    In this paper a review is presented of the research on eye gaze estimation techniques and applications, that has progressed in diverse ways over the past two decades. Several generic eye gaze use-cases are identified: desktop, TV, head-mounted, automotive and handheld devices. Analysis of the literature leads to the identification of several platform specific factors that influence gaze tracking accuracy. A key outcome from this review is the realization of a need to develop standardized methodologies for performance evaluation of gaze tracking systems and achieve consistency in their specification and comparative evaluation. To address this need, the concept of a methodological framework for practical evaluation of different gaze tracking systems is proposed.Comment: 25 pages, 13 figures, Accepted for publication in IEEE Access in July 201

    Digging Deeper into Egocentric Gaze Prediction

    Full text link
    This paper digs deeper into factors that influence egocentric gaze. Instead of training deep models for this purpose in a blind manner, we propose to inspect factors that contribute to gaze guidance during daily tasks. Bottom-up saliency and optical flow are assessed versus strong spatial prior baselines. Task-specific cues such as vanishing point, manipulation point, and hand regions are analyzed as representatives of top-down information. We also look into the contribution of these factors by investigating a simple recurrent neural model for ego-centric gaze prediction. First, deep features are extracted for all input video frames. Then, a gated recurrent unit is employed to integrate information over time and to predict the next fixation. We also propose an integrated model that combines the recurrent model with several top-down and bottom-up cues. Extensive experiments over multiple datasets reveal that (1) spatial biases are strong in egocentric videos, (2) bottom-up saliency models perform poorly in predicting gaze and underperform spatial biases, (3) deep features perform better compared to traditional features, (4) as opposed to hand regions, the manipulation point is a strong influential cue for gaze prediction, (5) combining the proposed recurrent model with bottom-up cues, vanishing points and, in particular, manipulation point results in the best gaze prediction accuracy over egocentric videos, (6) the knowledge transfer works best for cases where the tasks or sequences are similar, and (7) task and activity recognition can benefit from gaze prediction. Our findings suggest that (1) there should be more emphasis on hand-object interaction and (2) the egocentric vision community should consider larger datasets including diverse stimuli and more subjects.Comment: presented at WACV 201

    Collecting and Analyzing Eye-Tracking Data in Outdoor Environments

    Get PDF
    Natural outdoor conditions pose unique obstacles for researchers, above and beyond those inherent to all mobile eye-tracking research. During analyses of a large set of eye-tracking data collected on geologists examining outdoor scenes, we have found that the nature of calibration, pupil identification, fixation detection, and gaze analysis all require procedures different from those typically used for indoor studies. Here, we discuss each of these challenges and present solutions, which together define a general method useful for investigations relying on outdoor eye-tracking data. We also discuss recommendations for improving the tools that are available, to further increase the accuracy and utility of outdoor eye-tracking data

    Computer Aided Detection in Mammography

    Get PDF

    An investigation of the distribution of gaze estimation errors in head mounted gaze trackers using polynomial functions

    Get PDF
    Second order polynomials are commonly used for estimating the point-of-gaze in head-mounted eye trackers. Studies in remote (desktop) eye trackers show that although some non-standard 3rd order polynomial models could provide better accuracy, high-order polynomials do not necessarily provide better results. Different than remote setups though, where gaze is estimated over a relatively narrow field-of-view surface (e.g. less than 30x20 degrees on typical computer displays), head-mounted gaze trackers (HMGT) are often desired to cover a relatively wider field-of-view to make sure that the gaze is detected in the scene image even for extreme eye angles. In this paper we investigate the behavior of the gaze estimation error distribution throughout the image of the scene camera when using polynomial functions. Using simulated scenarios, we describe effects of four different sources of error: interpolation, extrapolation, parallax, and radial distortion. We show that the use of third order polynomials result in more accurate gaze estimates in HMGT, and that the use of wide angle lenses might be beneficial in terms of error reduction

    Two hours in Hollywood: A manually annotated ground truth data set of eye movements during movie clip watching

    Get PDF
    In this short article we present our manual annotation of the eye movement events in a subset of the large-scale eye tracking data set Hollywood2. Our labels include fixations, saccades, and smooth pursuits, as well as a noise event type (the latter representing either blinks, loss of tracking, or physically implausible signals). In order to achieve more consistent annotations, the gaze samples were labelled by a novice rater based on rudimentary algorithmic suggestions, and subsequently corrected by an expert rater. Overall, we annotated eye movement events in the recordings corresponding to 50 randomly selected test set clips and 6 training set clips from Hollywood2, which were viewed by 16 observers and amount to a total of approximately 130 minutes of gaze data. In these labels, 62.4% of the samples were attributed to fixations, 9.1% – to saccades, and, notably, 24.2% – to pursuit (the remainder marked as noise). After evaluation of 15 published eye movement classification algorithms on our newly collected annotated data set, we found that the most recent algorithms perform very well on average, and even reach human-level labelling quality for fixations and saccades, but all have a much larger room for improvement when it comes to smooth pursuit classification. The data set is made available at https://gin.g- node.org/ioannis.agtzidis/hollywood2_em

    Considerations for the Use of Remote Gaze Tracking to Assess Behavior in Flight Simulators

    Get PDF
    Complex user interfaces (such as those found in an aircraft cockpit) may be designed from first principles, but inevitably must be evaluated with real users. User gaze data can provide valuable information that can help to interpret other actions that change the state of the system. However, care must be taken to ensure that any conclusions drawn from gaze data are well supported. Through a combination of empirical and simulated data, we identify several considerations and potential pitfalls when measuring gaze behavior in high-fidelity simulators. We show that physical layout, behavioral differences, and noise levels can all substantially alter the quality of fit for algorithms that segment gaze measurements into individual fixations. We provide guidelines to help investigators ensure that conclusions drawn from gaze tracking data are not artifactual consequences of data quality or analysis techniques

    Eye Tracking in the Wild: the Good, the Bad and the Ugly

    Get PDF
    Modelling human cognition and behaviour in rich naturalistic settings and under conditions of free movement of the head and body is a major goal of visual science. Eye tracking has turned out to be an excellent physiological means to investigate how we visually interact with complex 3D environments, real and virtual. This review begins with a philosophical look at the advantages (the Good) and the disadvantages (the Bad) in approaches with different levels of ecological naturalness (traditional tightly controlled laboratory tasks, low- and high-fidelity simulators, fully naturalistic real-world studies). We then discuss in more technical terms the differences in approach required “in the wild”, compared to “received” lab-based methods. We highlight how the unreflecting application of lab-based analysis methods, terminology, and tacit assumptions can lead to poor experimental design or even spurious results (the Ugly). The aim is not to present a “cookbook” of best practices, but to raise awareness of some of the special concerns that naturalistic research brings about. References to helpful literature are provided along the way. The aim is to provide an overview of the landscape from the point of view of a researcher planning serious basic research on the human mind and behaviou
    corecore