1,152 research outputs found

    Manifolds associated with (Z2)n(Z_2)^n-colored regular graphs

    Full text link
    In this article we describe a canonical way to expand a certain kind of (Z2)n+1(\mathbb Z_2)^{n+1}-colored regular graphs into closed nn-manifolds by adding cells determined by the edge-colorings inductively. We show that every closed combinatorial nn-manifold can be obtained in this way. When n≤3n\leq 3, we give simple equivalent conditions for a colored graph to admit an expansion. In addition, we show that if a (Z2)n+1(\mathbb Z_2)^{n+1}-colored regular graph admits an nn-skeletal expansion, then it is realizable as the moment graph of an (n+1)(n+1)-dimensional closed (Z2)n+1(\mathbb Z_2)^{n+1}-manifold.Comment: 20 pages with 9 figures, in AMS-LaTex, v4 added a new section on reconstructing a space with a (Z2)n(Z_2)^n-action for which its moment graph is a given colored grap

    A new Kempe invariant and the (non)-ergodicity of the Wang-Swendsen-Kotecky algorithm

    Get PDF
    We prove that for the class of three-colorable triangulations of a closed oriented surface, the degree of a four-coloring modulo 12 is an invariant under Kempe changes. We use this general result to prove that for all triangulations T(3L,3M) of the torus with 3<= L <= M, there are at least two Kempe equivalence classes. This result implies in particular that the Wang-Swendsen-Kotecky algorithm for the zero-temperature 4-state Potts antiferromagnet on these triangulations T(3L,3M) of the torus is not ergodic.Comment: 37 pages (LaTeX2e). Includes tex file and 3 additional style files. The tex file includes 14 figures using pstricks.sty. Minor changes. Version published in J. Phys.

    Multicolored Dynamos on Toroidal Meshes

    Full text link
    Detecting on a graph the presence of the minimum number of nodes (target set) that will be able to "activate" a prescribed number of vertices in the graph is called the target set selection problem (TSS) proposed by Kempe, Kleinberg, and Tardos. In TSS's settings, nodes have two possible states (active or non-active) and the threshold triggering the activation of a node is given by the number of its active neighbors. Dealing with fault tolerance in a majority based system the two possible states are used to denote faulty or non-faulty nodes, and the threshold is given by the state of the majority of neighbors. Here, the major effort was in determining the distribution of initial faults leading the entire system to a faulty behavior. Such an activation pattern, also known as dynamic monopoly (or shortly dynamo), was introduced by Peleg in 1996. In this paper we extend the TSS problem's settings by representing nodes' states with a "multicolored" set. The extended version of the problem can be described as follows: let G be a simple connected graph where every node is assigned a color from a finite ordered set C = {1, . . ., k} of colors. At each local time step, each node can recolor itself, depending on the local configurations, with the color held by the majority of its neighbors. Given G, we study the initial distributions of colors leading the system to a k monochromatic configuration in toroidal meshes, focusing on the minimum number of initial k-colored nodes. We find upper and lower bounds to the size of a dynamo, and then special classes of dynamos, outlined by means of a new approach based on recoloring patterns, are characterized

    Vertex coloring of plane graphs with nonrepetitive boundary paths

    Full text link
    A sequence s1,s2,...,sk,s1,s2,...,sks_1,s_2,...,s_k,s_1,s_2,...,s_k is a repetition. A sequence SS is nonrepetitive, if no subsequence of consecutive terms of SS form a repetition. Let GG be a vertex colored graph. A path of GG is nonrepetitive, if the sequence of colors on its vertices is nonrepetitive. If GG is a plane graph, then a facial nonrepetitive vertex coloring of GG is a vertex coloring such that any facial path is nonrepetitive. Let πf(G)\pi_f(G) denote the minimum number of colors of a facial nonrepetitive vertex coloring of GG. Jendro\vl and Harant posed a conjecture that πf(G)\pi_f(G) can be bounded from above by a constant. We prove that πf(G)≤24\pi_f(G)\le 24 for any plane graph GG
    • …
    corecore