3,347 research outputs found

    Constraints on Dark Energy Models Including Gamma Ray Bursts

    Get PDF
    In this paper we analyze the constraints on the property of dark energy from cosmological observations. Together with SNe Ia Gold sample, WMAP, SDSS and 2dFGRS data, we include 69 long Gamma-Ray Bursts (GRBs) data in our study and perform global fitting using Markov Chain Monte Carlo (MCMC) technique. Dark energy perturbations are explicitly considered. We pay particular attention to the time evolution of the equation of state of dark energy parameterized as wDE=w0+wa(1a)w_{DE}=w_0+w_a(1-a) with aa the scale factor of the universe, emphasizing the complementarity of high redshift GRBs to other cosmological probes. It is found that the constraints on dark energy become stringent by taking into account high redshift GRBs, especially for waw_a, which delineates the evolution of dark energy.Comment: 7 pages and 3 figures. Replaced with version accepted for publication in Phys. Lett.

    Dark matter component decaying after recombination: lensing constraints with Planck data

    Full text link
    It has been recently suggested~\cite{Berezhiani:2015yta} that emerging tension between cosmological parameter values derived in high-redshift (CMB anisotropy) and low-redshift (cluster counts, Hubble constant) measurements can be reconciled in a model which contains subdominant fraction of dark matter decaying after recombination. We check the model against the CMB Planck data. We find that lensing of the CMB anisotropies by the large-scale structure gives strong extra constraints on this model, limiting the fraction as F<8%F<8\% at 2\,σ\sigma confidence level. However, investigating the combined data set of CMB and conflicting low-zz measurements, we obtain that the model with F2 ⁣ ⁣5F\approx2\!-\!5\% exhibits better fit (by 1.5-3\,σ\sigma depending on the lensing priors) compared to that of the concordance Λ\LambdaCDM cosmological model.Comment: 5 pages, 4 figures; v2: journal version, pages++, figures+

    Overcoming the Circular Problem for \gamma-ray Bursts in Cosmological Global Fitting Analysis

    Full text link
    Due to the lack of low redshift long Gamma-Ray Bursts (GRBs), the circular problem has been a severe obstacle for using GRBs as cosmological candles. In this paper, we present a new method to deal with such a problem in MCMC global fitting analysis. Assuming that a certain type of correlations between different observables exists in a subsample of GRBs, for the parameters involved in the correlation relation, we treat them as free parameters and determine them simultaneously with cosmological parameters through MCMC analysis on GRB data together with other observational data. Then the circular problem is naturally eliminated in this procedure. We take the Ghirlanda relation as an example while keeping in mind the debate about its physical validity. Together with SNe Ia, WMAP and SDSS data, we include 27 GRBs with the reported Ghirlanda relation in our study, and perform MCMC global fitting. We consider the Λ\LambdaCDM model and dynamical dark energy models. In each case, in addition to the constraints on the relevant cosmological parameters, we obtain the best fit values as well as the distributions of the correlation parameters AA and CC. We find that the observational data sets other than GRBs can affect AA and CC considerably through their degeneracies with the cosmological parameters. The results on AA and CC for different cosmological models are in well agreement within 1σ1\sigma range. The best fit value of AA in all models being analyzed is A1.53A\sim 1.53 with σ0.08\sigma \sim 0.08. For CC, we have the best value in the range of 0.940.980.94-0.98 with σ0.1\sigma\sim 0.1. It is also noted that the distributions of AA and CC are generally broader than the priors used in many studies in literature. (Abriged)Comment: 9 pages, 2 figures, 2 tables, Accepted for publication in Ap

    Constrained simulations of the local universe: I. Mass and motion in the Local Volume

    Full text link
    It has been recently claimed that there is no correlation between the distribution of galaxies and their peculiar velocities within the Local Volume (LV), namely a sphere of R=7/h Mpc around the Local Group (LG). It has been then stated that this implies that either locally dark matter is not distributed in the same way as luminous matter, or peculiar velocities are not due to fluctuations in mass. To test that statement a set of constrained N-body cosmological simulations, designed to reproduce the main observed large scale structure, have been analyzed. The simulations were performed within the flat-Lambda, open and flat matter only CDM cosmogonies. Two unconstrained simulations of the flat-Lambda and open CDM models were performed for comparison. LG-like objects have been selected so as to mimic the real LG environment. The local gravitational field due to all halos found within each LV is compared with the exact gravitational field induced by all matter in the simulation. We conclude that there is no correlation between the exact and the local gravitational field obtained by pairwise newtonian forces between halos. Moreover, the local gravitational field is uncorrelated with the peculiar velocities of halos. The exact gravitational field has a linear correlation with peculiar velocities but the proportionality constant relating the velocity with gravitational field falls below the prediction of the linear theory. Upon considering all matter inside the LVs, the exact and local gravitational accelerations show a much better correlation, but with a considerable scatter independent on the cosmological models. The main conclusion is that the lack of correlation between the local gravitation and the peculiar velocity fields around LG-like objects is naturally expected in the CDM cosmologies.Comment: 10 pages, 19 figures. Accepted for publication in MNRA

    CosmoDM and its application to Pan-STARRS data

    Full text link
    The Cosmology Data Management system (CosmoDM) is an automated and flexible data management system for the processing and calibration of data from optical photometric surveys. It is designed to run on supercomputers and to minimize disk I/O to enable scaling to very high throughput during periods of reprocessing. It serves as an early prototype for one element of the ground-based processing required by the Euclid mission and will also be employed in the preparation of ground based data needed in the eROSITA X-ray all sky survey mission. CosmoDM consists of two main pipelines. The first is the single-epoch or detrending pipeline, which is used to carry out the photometric and astrometric calibration of raw exposures. The second is the co- addition pipeline, which combines the data from individual exposures into deeper coadd images and science ready catalogs. A novel feature of CosmoDM is that it uses a modified stack of As- tromatic software which can read and write tile compressed images. Since 2011, CosmoDM has been used to process data from the DECam, the CFHT MegaCam and the Pan-STARRS cameras. In this paper we shall describe how processed Pan-STARRS data from CosmoDM has been used to optically confirm and measure photometric redshifts of Planck-based Sunyaev-Zeldovich effect selected cluster candidates.Comment: 11 pages, 4 figures. Proceedings of Precision Astronomy with Fully Depleted CCDs Workshop (2014). Accepted for publication in JINS

    Investigating the Dark Sector: Attempting to Resolve the Hubble Tension with a Modified Model of the Universe

    Get PDF
    The standard model of Big Bang cosmology is the ΛCDM model, which incorporates cold dark matter and dark energy, two mysterious components of what is known as the “dark sector” of the universe, or sector not directly observable with light. Observations of primordial light in the universe allow precision tests of cosmological models, including the expansion rate of the universe, also known as the Hubble constant. Values of the Hubble constant determined using observations of primordial light and the ΛCDM model are in disagreement with the value determined from local observables, such as the recession velocities of galaxies observable with satellites. This tension may indicate a need to move beyond standard ΛCDM. During my International Research Opportunities Program (IROP) research at the Indian Institute of Astrophysics in Bangalore, India, I studied a possible extension of the ΛCDM model in which cold dark matter decays into dark radiation. In this project I investigated the effects of decaying dark matter on cosmological observables such as the Hubble constant. My results show that the decaying dark matter model may help alleviate tension between the indirect and direct 0determinations of the Hubble constant
    corecore