92 research outputs found

    Modelling the interaction between induced pluripotent stem cells derived cardiomyocytes patches and the recipient hearts

    Get PDF
    Cardiovascular diseases are the main cause of death worldwide. The single biggest killer is represented by ischemic heart disease. Myocardial infarction causes the formation of non-conductive and non-contractile, scar-like tissue in the heart, which can hamper the heart's physiological function and cause pathologies ranging from arrhythmias to heart failure. The heart can not recover the tissue lost due to myocardial infarction due to the myocardium's limited ability to regenerate. The only available treatment is heart transpalant, which is limited by the number of donors and can elicit an adverse response from the recipients immune system. Recently, regenerative medicine has been proposed as an alternative approach to help post-myocardial infarction hearts recover their functionality. Among the various techniques, the application of cardiac patches of engineered heart tissue in combination with electroactive materials constitutes a promising technology. However, many challenges need to be faced in the development of this treatment. One of the main concerns is represented by the immature phenotype of the stem cells-derived cardiomyocytes used to fabricate the engineered heart tissue. Their electrophysiological differences with respect to the host myocardium may contribute to an increased arrhythmia risk. A large number of animal experiments are needed to optimize the patches' characteristics and to better understand the implications of the electrical interaction between patches and host myocardium. In this Thesis we leveraged cardiac computational modelling to simulate \emph{in silico} electrical propagation in scarred heart tissue in the presence of a patch of engineered heart tissue and conductive polymer engrafted at the epicardium. This work is composed by two studies. In the first study we designed a tissue model with simplified geometry and used machine learning and global sensitivity analysis techniques to identify engineered heart tissue patch design variables that are important for restoring physiological electrophysiology in the host myocardium. Additionally, we showed how engineered heart tissue properties could be tuned to restore physiological activation while reducing arrhythmic risk. In the second study we moved to more realistic geometries and we devised a way to manipulate ventricle meshes obtained from magnetic resonance images to apply \emph{in silico} engineered heart tissue epicardial patches. We then investigated how patches with different conduction velocity and action potential duration influence the host ventricle electrophysiology. Specifically, we showed that appropriately located patches can reduce the predisposition to anatomical isthmus mediated re-entry and that patches with a physiological action potential duration and higher conduction velocity were most effective in reducing this risk. We also demonstrated that patches with conduction velocity and action potential duration typical of immature stem cells-derived cardiomyocytes were associated with the onset of sustained functional re-entry in an ischemic cardiomyopathy model with a large transmural scar. Finally, we demonstrated that patches electrically coupled to host myocardium reduce the likelihood of propagation of focal ectopic impulses. This Thesis demonstrates how computational modelling can be successfully applied to the field of regenerative medicine and constitutes the first step towards the creation of patient-specific models for developing and testing patches for cardiac regeneration.Open Acces

    Computational modelling of the human heart and multiscale simulation of its electrophysiological activity aimed at the treatment of cardiac arrhythmias related to ischaemia and Infarction

    Full text link
    [ES] Las enfermedades cardiovasculares constituyen la principal causa de morbilidad y mortalidad a nivel mundial, causando en torno a 18 millones de muertes cada año. De entre ellas, la más común es la enfermedad isquémica cardíaca, habitualmente denominada como infarto de miocardio (IM). Tras superar un IM, un considerable número de pacientes desarrollan taquicardias ventriculares (TV) potencialmente mortales durante la fase crónica del IM, es decir, semanas, meses o incluso años después la fase aguda inicial. Este tipo concreto de TV normalmente se origina por una reentrada a través de canales de conducción (CC), filamentos de miocardio superviviente que atraviesan la cicatriz del infarto fibrosa y no conductora. Cuando los fármacos anti-arrítmicos resultan incapaces de evitar episodios recurrentes de TV, la ablación por radiofrecuencia (ARF), un procedimiento mínimamente invasivo realizado mediante cateterismo en el laboratorio de electrofisiología (EF), se usa habitualmente para interrumpir de manera permanente la propagación eléctrica a través de los CCs responsables de la TV. Sin embargo, además de ser invasivo, arriesgado y requerir mucho tiempo, en casos de TVs relacionadas con IM crónico, hasta un 50% de los pacientes continúa padeciendo episodios recurrentes de TV tras el procedimiento de ARF. Por tanto, existe la necesidad de desarrollar nuevas estrategias pre-procedimiento para mejorar la planificación de la ARF y, de ese modo, aumentar esta tasa de éxito relativamente baja. En primer lugar, realizamos una revisión exhaustiva de la literatura referente a los modelos cardiacos 3D existentes, con el fin de obtener un profundo conocimiento de sus principales características y los métodos usados en su construcción, con especial atención sobre los modelos orientados a simulación de EF cardíaca. Luego, usando datos clínicos de un paciente con historial de TV relacionada con infarto, diseñamos e implementamos una serie de estrategias y metodologías para (1) generar modelos computacionales 3D específicos de paciente de ventrículos infartados que puedan usarse para realizar simulaciones de EF cardíaca a nivel de órgano, incluyendo la cicatriz del infarto y la región circundante conocida como zona de borde (ZB); (2) construir modelos 3D de torso que permitan la obtención del ECG simulado; y (3) llevar a cabo estudios in-silico de EF personalizados y pre-procedimiento, tratando de replicar los verdaderos estudios de EF realizados en el laboratorio de EF antes de la ablación. La finalidad de estas metodologías es la de localizar los CCs en el modelo ventricular 3D para ayudar a definir los objetivos de ablación óptimos para el procedimiento de ARF. Por último, realizamos el estudio retrospectivo por simulación de un caso, en el que logramos inducir la TV reentrante relacionada con el infarto usando diferentes configuraciones de modelado para la ZB. Validamos nuestros resultados mediante la reproducción, con una precisión razonable, del ECG del paciente en TV, así como en ritmo sinusal a partir de los mapas de activación endocárdica obtenidos invasivamente mediante sistemas de mapeado electroanatómico en este último caso. Esto permitió encontrar la ubicación y analizar las características del CC responsable de la TV clínica. Cabe destacar que dicho estudio in-silico de EF podría haberse efectuado antes del procedimiento de ARF, puesto que nuestro planteamiento está completamente basado en datos clínicos no invasivos adquiridos antes de la intervención real. Estos resultados confirman la viabilidad de la realización de estudios in-silico de EF personalizados y pre-procedimiento de utilidad, así como el potencial del abordaje propuesto para llegar a ser en un futuro una herramienta de apoyo para la planificación de la ARF en casos de TVs reentrantes relacionadas con infarto. No obstante, la metodología propuesta requiere de notables mejoras y validación por medio de es[CA] Les malalties cardiovasculars constitueixen la principal causa de morbiditat i mortalitat a nivell mundial, causant entorn a 18 milions de morts cada any. De elles, la més comuna és la malaltia isquèmica cardíaca, habitualment denominada infart de miocardi (IM). Després de superar un IM, un considerable nombre de pacients desenvolupen taquicàrdies ventriculars (TV) potencialment mortals durant la fase crònica de l'IM, és a dir, setmanes, mesos i fins i tot anys després de la fase aguda inicial. Aquest tipus concret de TV normalment s'origina per una reentrada a través dels canals de conducció (CC), filaments de miocardi supervivent que travessen la cicatriu de l'infart fibrosa i no conductora. Quan els fàrmacs anti-arítmics resulten incapaços d'evitar episodis recurrents de TV, l'ablació per radiofreqüència (ARF), un procediment mínimament invasiu realitzat mitjançant cateterisme en el laboratori de electrofisiologia (EF), s'usa habitualment per a interrompre de manera permanent la propagació elèctrica a través dels CCs responsables de la TV. No obstant això, a més de ser invasiu, arriscat i requerir molt de temps, en casos de TVs relacionades amb IM crònic fins a un 50% dels pacients continua patint episodis recurrents de TV després del procediment d'ARF. Per tant, existeix la necessitat de desenvolupar noves estratègies pre-procediment per a millorar la planificació de l'ARF i, d'aquesta manera, augmentar la taxa d'èxit, que es relativament baixa. En primer lloc, realitzem una revisió exhaustiva de la literatura referent als models cardíacs 3D existents, amb la finalitat d'obtindre un profund coneixement de les seues principals característiques i els mètodes usats en la seua construcció, amb especial atenció sobre els models orientats a simulació de EF cardíaca. Posteriorment, usant dades clíniques d'un pacient amb historial de TV relacionada amb infart, dissenyem i implementem una sèrie d'estratègies i metodologies per a (1) generar models computacionals 3D específics de pacient de ventricles infartats capaços de realitzar simulacions de EF cardíaca a nivell d'òrgan, incloent la cicatriu de l'infart i la regió circumdant coneguda com a zona de vora (ZV); (2) construir models 3D de tors que permeten l'obtenció del ECG simulat; i (3) dur a terme estudis in-silico de EF personalitzats i pre-procediment, tractant de replicar els vertaders estudis de EF realitzats en el laboratori de EF abans de l'ablació. La finalitat d'aquestes metodologies és la de localitzar els CCs en el model ventricular 3D per a ajudar a definir els objectius d'ablació òptims per al procediment d'ARF. Finalment, a manera de prova de concepte, realitzem l'estudi retrospectiu per simulació d'un cas, en el qual aconseguim induir la TV reentrant relacionada amb l'infart usant diferents configuracions de modelatge per a la ZV. Validem els nostres resultats mitjançant la reproducció, amb una precisió raonable, del ECG del pacient en TV, així com en ritme sinusal a partir dels mapes d'activació endocardíac obtinguts invasivament mitjançant sistemes de mapatge electro-anatòmic en aquest últim cas. Això va permetre trobar la ubicació i analitzar les característiques del CC responsable de la TV clínica. Cal destacar que aquest estudi in-silico de EF podria haver-se efectuat abans del procediment d'ARF, ja que el nostre plantejament està completament basat en dades clíniques no invasius adquirits abans de la intervenció real. Aquests resultats confirmen la viabilitat de la realització d'estudis in-silico de EF personalitzats i pre-procediment d'utilitat, així com el potencial de l'abordatge proposat per a arribar a ser en un futur una eina de suport per a la planificació de l'ARF en casos de TVs reentrants relacionades amb infart. No obstant això, la metodologia proposada requereix de notables millores i validació per mitjà d'estudis de simulació amb grans cohorts de pacients.[EN] Cardiovascular diseases represent the main cause of morbidity and mortality worldwide, causing around 18 million deaths every year. Among these diseases, the most common one is the ischaemic heart disease, usually referred to as myocardial infarction (MI). After surviving to a MI, a considerable number of patients develop life-threatening ventricular tachycardias (VT) during the chronic stage of the MI, that is, weeks, months or even years after the initial acute phase. This particular type of VT is typically sustained by reentry through slow conducting channels (CC), which are filaments of surviving myocardium that cross the non-conducting fibrotic infarct scar. When anti-arrhythmic drugs are unable to prevent recurrent VT episodes, radiofrequency ablation (RFA), a minimally invasive procedure performed by catheterization in the electrophysiology (EP) laboratory, is commonly used to interrupt the electrical conduction through the CCs responsible for the VT permanently. However, besides being invasive, risky and time-consuming, in the cases of VTs related to chronic MI, up to 50% of patients continue suffering from recurrent VT episodes after the RFA procedure. Therefore, there exists a need to develop novel pre-procedural strategies to improve RFA planning and, thereby, increase this relatively low success rate. First, we conducted an exhaustive review of the literature associated with the existing 3D cardiac models in order to gain a deep knowledge about their main features and the methods used for their construction, with special focus on those models oriented to simulation of cardiac EP. Later, using a clinical dataset of a chronically infarcted patient with a history of infarct-related VT, we designed and implemented a number of strategies and methodologies to (1) build patient-specific 3D computational models of infarcted ventricles that can be used to perform simulations of cardiac EP at the organ level, including the infarct scar and the surrounding region known as border zone (BZ); (2) construct 3D torso models that enable to compute the simulated ECG; and (3) carry out pre-procedural personalized in-silico EP studies, trying to replicate the actual EP studies conducted in the EP laboratory prior to the ablation. The goal of these methodologies is to allow locating the CCs into the 3D ventricular model in order to help in defining the optimal ablation targets for the RFA procedure. Lastly, as a proof-of-concept, we performed a retrospective simulation case study, in which we were able to induce an infarct-related reentrant VT using different modelling configurations for the BZ. We validated our results by reproducing with a reasonable accuracy the patient's ECG during VT, as well as in sinus rhythm from the endocardial activation maps invasively recorded via electroanatomical mapping systems in this latter case. This allowed us to find the location and analyse the features of the CC responsible for the clinical VT. Importantly, such in-silico EP study might have been conducted prior to the RFA procedure, since our approach is completely based on non-invasive clinical data acquired before the real intervention. These results confirm the feasibility of performing useful pre-procedural personalized in-silico EP studies, as well as the potential of the proposed approach to become a helpful tool for RFA planning in cases of infarct-related reentrant VTs in the future. Nevertheless, the developed methodology requires further improvements and validation by means of simulation studies including large cohorts of patients.During the carrying out of this doctoral thesis, the author Alejandro Daniel López Pérez was financially supported by the Ministerio de Economía, Industria y Competitividad of Spain through the program Ayudas para contratos predoctorales para la formación de doctores, with the grant number BES-2013-064089.López Pérez, AD. (2019). Computational modelling of the human heart and multiscale simulation of its electrophysiological activity aimed at the treatment of cardiac arrhythmias related to ischaemia and Infarction [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124973TESI

    Human heart heterogeneity and its role in the onset and perpetuation of cardiac arrhythmias

    Get PDF

    Key aspects for effective mathematical modelling of fractional-diffusion in cardiac electrophysiology: A quantitative study

    Get PDF
    Microscopic structural features of cardiac tissue play a fundamental role in determining complex spatio-temporal excitation dynamics at the macroscopic level. Recent efforts have been devoted to the development of mathematical models accounting for non-local spatio-temporal coupling able to capture these complex dynamics without the need of resolving tissue heterogeneities down to the micro-scale. In this work, we analyse in detail several important aspects affecting the overall predictive power of these modelling tools and provide some guidelines for an effective use of space-fractional models of cardiac electrophysiology in practical applications. Through an extensive computational study in simplified computational domains, we highlight the robustness of models belonging to different categories, i.e., physiological and phenomenological descriptions, against the introduction of non-locality, and lay down the foundations for future research and model validation against experimental data. A modern genetic algorithm framework is used to investigate proper parameterisations of the considered models, and the crucial role played by the boundary assumptions in the considered settings is discussed. Several numerical results are provided to support our claims.Italian National Group of Mathematical Physics (GNFM-INdAM); NSF grant No. 1762553; NIH grant No. 1R01HL143450-0

    Cardiac cell modelling: Observations from the heart of the cardiac physiome project

    Get PDF
    In this manuscript we review the state of cardiac cell modelling in the context of international initiatives such as the IUPS Physiome and Virtual Physiological Human Projects, which aim to integrate computational models across scales and physics. In particular we focus on the relationship between experimental data and model parameterisation across a range of model types and cellular physiological systems. Finally, in the context of parameter identification and model reuse within the Cardiac Physiome, we suggest some future priority areas for this field

    In silico study of calcium handling in the human failing heart

    Full text link
    Tesis por compendio[EN] Heart failure, a cardiomyopathy that produces mechanical dysfunction and sudden cardiac death following fatal arrhythmias, is one of the main causes of mortality worldwide that also causes elevated morbidity rates. Current clinical therapies are challenged by the complexity of this cardiac pathology, in which many factors are involved in the electrical instabilities that lead to an altered function. The electrical activity of the heart comprises a wide range of spatial and temporal scales. Ion transport across transmembrane proteins initiate the cellular depolarization that is propagated cell to cell through the myocardium depolarizing and then repolarizing the entire heart in an orchestrated manner. The electrical excitation of cardiomyocytes triggers the cellular contraction, a process in which Ca2+ ions are the main mediators. Ca2+ dynamics plays a relevant role in controlling excitation-contraction coupling and consequently, investigations have focused on Ca2+-handling proteins and the regulation of Ca2+ homeostasis to elucidate the causes of impaired contractility and pro-arrhythmic conditions in cardiac diseases. This thesis takes advantage of the existence of mathematical models with detailed representation of the subcellular processes to perform computational simulations of cardiac electrophysiology and understand the altered mechanisms that govern heart failure, especially those related with intracellular Ca2+ cycling. It is known that failing myocytes undergo a specific remodeling of ion channels and Ca2+-handling proteins that lead to an impaired excitation-contraction coupling. Initially, it was analyzed, in the human action potential model of ventricular myocytes selected for the whole study, the effects of modulating ionic mechanisms on the electrical activity and Ca2+ dynamics. In tissue, heart failure induces additional changes affecting cellular coupling. The development of fibroblasts and impact on myocyte electrophysiology was investigated, including the vulnerability to generate alternans, a common precursor to arrhythmogenesis. Finally, the beta-adrenergic signaling model was integrated with the action potential model because of the electrophysiological modulation exerted by the sympathetic nervous system, which is aggravated under heart failure conditions. Results highlighted the need of studying heart failure therapies on failing cells because of the different response of ion channels and membrane proteins to drugs. Functional Ca2+ proteins were important to maintain Ca2+ homeostasis and to avoid malignant electrical consequences, being SERCA pump the most critical factor. Apart from the electrophysiological remodeling, fibroblast interaction contributed to alter Ca2+ dynamics in myocytes and, when analyzing Ca2+ alternans, spatial electrical discordances predominated in failing tissues. The inclusion of beta-adrenergic stimulation showed that the inotropic response was diminished in heart failure as well as the antiarrhythmic benefits provided by catecholamines in the normal heart. These findings contribute to gain insight into the pathophysiology of heart failure and the development of new pharmacological agents targeted to restore Ca2+ dynamics. The control of intracellular Ca2+ cycling is crucial to ensure both the mechanical force and the electrical activity that lead to a rhythmic contraction of the heart.[ES] La insuficiencia cardíaca, una cardiomiopatía que provoca disfunción mecánica y muerte súbita tras arritmias cardíacas letales, es una de las principales causas de mortalidad en todo el mundo que además causa tasas de morbilidad elevadas. Las terapias usadas actualmente en la clínica están comprometidas por la complejidad de esta patología cardíaca, ya que son muchos los factores que están implicados en las inestabilidades eléctricas que conllevan a alteraciones funcionales. La actividad eléctrica del corazón abarca un amplio rango escalas espaciales y temporales. El transporte de iones a través de las proteínas transmembrana inicia la despolarización celular que se propaga de célula en célula a través del miocardio, despolarizando y luego repolarizando todo el corazón de manera sincronizada. La excitación eléctrica de los cardiomiocitos desencadena la contracción celular, un proceso en el que los iones de Ca2+ son los principales intermediarios. La dinámica de Ca2+ tiene un papel relevante en el control del acoplamiento excitación-contracción y, como consecuencia, las investigaciones se han centrado en las proteínas que controlan el ciclo del Ca2+ y la regulación homeostática para encontrar las causas que empeoran la contractilidad y conducen a condiciones proarrítmicas en casos de insuficiencia cardíaca. Esta tesis hace uso de la existencia de modelos matemáticos con una representación detallada de los procesos subcelulares para realizar simulaciones computacionales de electrofisiología cardíaca y comprender los mecanismos que están alterados y predominan en insuficiencia cardíaca, especialmente aquellos relacionados con el ciclo intracelular de Ca2+ . Se sabe que los miocitos dañados por insuficiencia cardíaca experimentan un remodelado específico en los canales iónicos y en las proteínas partícipes en el ciclo de Ca2+, ocasionando fallos en el acoplamiento excitación-contracción. Inicialmente, se analizaron, en el modelo de potencial de acción humano de miocitos ventriculares seleccionado para todo el estudio, los efectos de la modulación de los mecanismos iónicos sobre la actividad eléctrica y la dinámica de Ca2+. En los tejidos, la insuficiencia cardíaca induce cambios adicionales que afectan el acoplamiento celular. Se ha investigado la presencia de fibroblastos y su impacto en la electrofisiología de los miocitos, incluida la vulnerabilidad para generar alternantes, un precursor común de la arritmogénesis. Finalmente, se ha incluido el modelo de señalización -adrenérgica integrado con el modelo de potencial de acción debido a la modulación electrofisiológica ejercida por el sistema nervioso simpático, que se agrava en condiciones de insuficiencia cardíaca. Los resultados han destacado la necesidad de estudiar las terapias de insuficiencia cardíaca en células de estos corazones debido a la diferente respuesta de los canales iónicos y las proteínas de membrana a los medicamentos. El buen funcionamiento de las proteínas reguladoras del Ca2+ es importantes para mantener la homeostasis del Ca2+ y evitar consecuencias eléctricas malignas, siendo la bomba SERCA el factor más crítico. Además del remodelado electrofisiológico, la interacción con fibroblastos contribuye a alterar la dinámica de Ca2+ en los miocitos y, al analizar los alternantes de Ca2+, predominan las discordancias eléctricas espaciales en los tejidos de corazones con insuficiencia cardíaca. La inclusión de la estimulación -adrenérgica ha mostrado que la respuesta inotrópica disminuye en insuficiencia cardíaca, así como los beneficios antiarrítmicos proporcionados por las catecolaminas en un corazón normal. Estos hallazgos contribuyen a obtener información sobre la fisiopatología de la insuficiencia cardíaca y el desarrollo de nuevos agentes farmacológicos destinados a restaurar la dinámica de Ca 2+. El control del ciclo de Ca2+ intracelular es crítico para garantizar tanto la fuerza mecánica como la actividad eléctrica que conducen a una contracción rítmica del corazón.[CA] La insuficiència cardíaca, una cardiomiopatia que provoca disfunció mecànica i mort sobtada després d'arrítmies cardíaques letals, és una de les principals causes de mortalitat a tot el món que a més causa taxes de morbiditat elevades. Les teràpies utilitzades actualment en la clínica estan compromeses per la complexitat d'aquesta patologia cardíaca, ja que són molts els factors que estan implicats en les inestabilitats elèctriques que comporten a alteracions funcionals. L'activitat elèctrica del cor abasta un ampli rang d'escales espacials i temporals. El transport d'ions a través de les proteïnes transmembrana inicia la despolarització cel·lular que es propaga de cèl·lula en cèl·lula a través del miocardi, despolaritzant i després repolaritzant tot el cor de manera sincronitzada. L'excitació elèctrica dels cardiomiòcits desencadena la contracció cel·lular, un procés en el qual els ions de Ca2+ són els principals intermediaris. La dinàmica de Ca2+ té un paper rellevant en el control de l'acoblament excitació-contracció i, com a conseqüència, les investigacions s'han centrat en les proteïnes que controlen el cicle del Ca2+ i la regulació homeostàtica per a trobar les causes que empitjoren la contractilitat i condueixen a condicions proarrítmiques en casos d'insuficiència cardíaca. Aquesta tesi fa ús de l'existència de models matemàtics amb una representació detallada dels processos subcel·lulars per a realitzar simulacions computacionals de l'electrofisiologia cardíaca i comprendre els mecanismes que estan alterats i predominen en insuficiència cardíaca, especialment aquells relacionats amb el cicle intracel·lular de Ca2+. Se sap que els miòcits danyats per insuficiència cardíaca experimenten un remodelat específic en els canals iònics i en les proteïnes partícips en el cicle de Ca2+, ocasionant fallades en l'acoblament excitació-contracció. Inicialment, es van analitzar, en el model de potencial d'acció humà de miòcits ventriculars seleccionat per a tot l'estudi, els efectes de la modulació dels mecanismes iònics sobre l'activitat elèctrica i la dinàmica de Ca2+. En els teixits, la insuficiència cardíaca indueix canvis addicionals que afecten l'acoblament cel·lular. S'ha investigat la presència de fibroblasts i el seu impacte en l'electrofisiologia dels miòcits, inclosa la vulnerabilitat per a generar alternants, un precursor comú de l'arritmogènesi. Finalment, s'ha inclòs el model de senyalització beta-adrenèrgica integrat amb el model de potencial d'acció a causa de la modulació electrofisiològica exercida pel sistema nerviós simpàtic, que s'agreuja en condicions d'insuficiència cardíaca. Els resultats han destacat la necessitat d'estudiar les teràpies d'insuficiència cardíaca en cèl·lules d'aquests cors a causa de la diferent resposta dels canals iònics i les proteïnes de membrana als medicaments. El bon funcionament de les proteïnes reguladores del Ca2+ és importants per a mantindre l'homeòstasi del Ca2+ i evitar conseqüències elèctriques malignes, sent la bomba SERCA el factor més crític. A més del remodelat electrofisiològic, la interacció amb fibroblasts contribueix a alterar la dinàmica de Ca2+ en els miòcits i, en analitzar els alternants de Ca2+, predominen les discordances elèctriques espacials en els teixits de cors amb insuficiència cardíaca. La inclusió de l'estimulació beta-adrenèrgica ha mostrat que la resposta inotròpica disminueix en insuficiència cardíaca, així com els beneficis antiarrítmics proporcionats per les catecolamines en un cor normal. Aquestes troballes contribueixen a obtindre informació sobre la fisiopatologia de la insuficiència cardíaca i el desenvolupament de nous agents farmacològics destinats a restaurar la dinàmica de Ca2+. El control del cicle de Ca2+ intracel·lular és crític per a garantir tant la força mecànica com l'activitat elèctrica per a una contracció rítmica del cor.Mora Fenoll, MT. (2020). In silico study of calcium handling in the human failing heart [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/153143TESISCompendi

    An audit of uncertainty in multi-scale cardiac electrophysiology models

    Get PDF
    Models of electrical activation and recovery in cardiac cells and tissue have become valuable research tools, and are beginning to be used in safety-critical applications including guidance for clinical procedures and for drug safety assessment. As a consequence, there is an urgent need for a more detailed and quantitative understanding of the ways that uncertainty and variability influence model predictions. In this paper, we review the sources of uncertainty in these models at different spatial scales, discuss how uncertainties are communicated across scales, and begin to assess their relative importance. We conclude by highlighting important challenges that continue to face the cardiac modelling community, identifying open questions, and making recommendations for future studies. This article is part of the theme issue ‘Uncertainty quantification in cardiac and cardiovascular modelling and simulation’

    Studies on the dynamics of chaotic multi-wavelet reentrant propagation using a hybrid cellular automaton model of excitable tissue

    Full text link
    There is a compelling body of evidence implicating continuous propagation (reentry) sustained by multiple meandering wavelets in the pathology of advanced human atrial fibrillation (AF). This forms the basis for many current therapies such as the Cox MAZE procedure and its derivatives, which aim to create non-conducting lesions in order to "transect" these circuits before they form. Nevertheless, our ability to successfully treat persistent and permanent AF using catheter ablation remains inadequate due to current limitations of clinical mapping technology as well as an incomplete understanding of how to place lesions in order to maximize circuit transection and, more importantly, minimize AF burden. Here, we used a hybrid cellular automaton model to study the dynamics of chaotic, multi-wavelet reentry (MWR) in excitable tissue. First, we used reentry as an exemplar to investigate a hysteretic disease mechanism in a multistable nonlinear system. We found that certain interactions with the environment can cause persistent changes to system behavior without altering its structure or properties, thus leading to a disconnect between clinical symptoms and the underlying state of disease. Second, we developed a novel analytical method to characterize the spatiotemporal dynamics of MWR. We identified a heterogeneous spatial distribution of reentrant pathways that correlated with the spatial distribution of cell activation frequencies. Third, we investigated the impact of topological and geometrical substrate alterations on the dynamics of MWR. We demonstrated a multi-phasic relationship between obstacle size and the fate of individual episodes. Notably, for a narrow range of sizes, obstacles appeared to play an active role in rapidly converting MWR to stable structural reentry. Our studies indicate that reentrant-pathway distributions are non-uniform in heterogeneous media (such as the atrial myocardium) and suggest a clinically measurable correlate for identifying regions of high circuit density, supporting the feasibility of patient-specific targeted ablation. Moreover, we have elucidated the key mechanisms of interaction between focal obstacles and MWR, which has implications for the use of spot ablation to treat AF as some recent studies have suggested
    corecore