6,538 research outputs found

    Optimal Fuzzy Model Construction with Statistical Information using Genetic Algorithm

    Full text link
    Fuzzy rule based models have a capability to approximate any continuous function to any degree of accuracy on a compact domain. The majority of FLC design process relies on heuristic knowledge of experience operators. In order to make the design process automatic we present a genetic approach to learn fuzzy rules as well as membership function parameters. Moreover, several statistical information criteria such as the Akaike information criterion (AIC), the Bhansali-Downham information criterion (BDIC), and the Schwarz-Rissanen information criterion (SRIC) are used to construct optimal fuzzy models by reducing fuzzy rules. A genetic scheme is used to design Takagi-Sugeno-Kang (TSK) model for identification of the antecedent rule parameters and the identification of the consequent parameters. Computer simulations are presented confirming the performance of the constructed fuzzy logic controller

    Adaptive Process Control with Fuzzy Logic and Genetic Algorithms

    Get PDF
    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented

    Adaptive process control using fuzzy logic and genetic algorithms

    Get PDF
    Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented

    Modeling the Drying Kinetics of Green Bell Pepper in a Heat Pump Assisted Fluidized Bed Dryer

    Get PDF
    In this research, green bell pepper was dried in a pilot plant fluidized bed dryer equipped with a heat pump humidifier using three temperatures of 40, 50 and 60C and two airflow velocities of 2 and 3m/s in constant air moisture. Three modeling methods including nonlinear regression technique, Fuzzy Logic and Artificial Neural Networks were applied to investigate drying kinetics for the sample. Among the mathematical models, Midilli model with R=0.9998 and root mean square error (RMSE)=0.00451 showed the best fit with experimental data. Feed-Forward-Back-Propagation network with Levenberg-Marquardt training algorithm, hyperbolic tangent sigmoid transfer function, training cycle of 1,000 epoch and 2-5-1 topology, deserving R=0.99828 and mean square error (MSE)=5.5E-05, was determined as the best neural model. Overall, Neural Networks method was much more precise than two other methods in prediction of drying kinetics and control of drying parameters for green bell pepper. Practical Applications: This article deals with different modeling approaches and their effectiveness and accuracy for predicting changes in the moisture ratio of green bell pepper enduring fluidized bed drying, which is one of the most concerning issues in food factories involved in drying fruits and vegetables. This research indicates that although efficiency of mathematical modeling, Fuzzy Logic controls and Artificial Neural Networks (ANNs) were all acceptable, the modern prediction methods of Fuzzy Logic and especially ANNs were more productive and precise. Besides, this report compares our findings with previous ones carried out with the view of predicting moisture quotients of other food crops during miscellaneous drying procedures. © 2016 Wiley Periodicals, Inc

    Gray Image extraction using Fuzzy Logic

    Full text link
    Fuzzy systems concern fundamental methodology to represent and process uncertainty and imprecision in the linguistic information. The fuzzy systems that use fuzzy rules to represent the domain knowledge of the problem are known as Fuzzy Rule Base Systems (FRBS). On the other hand image segmentation and subsequent extraction from a noise-affected background, with the help of various soft computing methods, are relatively new and quite popular due to various reasons. These methods include various Artificial Neural Network (ANN) models (primarily supervised in nature), Genetic Algorithm (GA) based techniques, intensity histogram based methods etc. providing an extraction solution working in unsupervised mode happens to be even more interesting problem. Literature suggests that effort in this respect appears to be quite rudimentary. In the present article, we propose a fuzzy rule guided novel technique that is functional devoid of any external intervention during execution. Experimental results suggest that this approach is an efficient one in comparison to different other techniques extensively addressed in literature. In order to justify the supremacy of performance of our proposed technique in respect of its competitors, we take recourse to effective metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR).Comment: 8 pages, 5 figures, Fuzzy Rule Base, Image Extraction, Fuzzy Inference System (FIS), Membership Functions, Membership values,Image coding and Processing, Soft Computing, Computer Vision Accepted and published in IEEE. arXiv admin note: text overlap with arXiv:1206.363

    Multi-region System Modelling by using Genetic Programming to Extract Rule Consequent Functions in a TSK Fuzzy System

    Full text link
    [EN] This paper aims to build a fuzzy system by means of genetic programming, which is used to extract the relevant function for each rule consequent through symbolic regression. The employed TSK fuzzy system is complemented with a variational Bayesian Gaussian mixture clustering method, which identifies the domain partition, simultaneously specifying the number of rules as well as the parameters in the fuzzy sets. The genetic programming approach is accompanied with an orthogonal least square algorithm, to extract robust rule consequent functions for the fuzzy system. The proposed model is validated with a synthetic surface, and then with real data from a gas turbine compressor map case, which is compared with an adaptive neuro-fuzzy inference system model. The results have demonstrated the efficacy of the proposed approach for modelling system with small data or bifurcating dynamics, where the analytical equations are not available, such as those in a typical industrial setting.Research supported by EPSRC Grant EVES (EP/R029741/1).Zhang, Y.; MartĂ­nez-GarcĂ­a, M.; Serrano, J.; Latimer, A. (2019). Multi-region System Modelling by using Genetic Programming to Extract Rule Consequent Functions in a TSK Fuzzy System. IEEE. 987-992. https://doi.org/10.1109/ICARM.2019.8834163S98799

    Fruit production forecasting by neuro-fuzzy techniques

    Get PDF
    Neuro-fuzzy techniques are finding a practical application in many fields such as in model identification and forecasting of linear and non-linear systems. This paper presents a neuro-fuzzy model for forecasting the fruit production of some agriculture products (olives, lemons, oranges, cherries and pistachios). The model utilizes a time series of yearly data. The fruit forecasting is based on Adaptive Neural Fuzzy Inference System (ANFIS). ANFIS uses a combination of the least-squares method and the backprobagation gradient descent method to estimate the optimal food forecast parameters for each year. The results are compared to those of an Autoregressive (AR) model and an Autoregressive Moving Average model (ARMA).Fruit forecasting, neuro-fuzzy, ANFIS, AR, ARMA, forecasting, fruit production, Agricultural Finance, Crop Production/Industries,
    • …
    corecore