728 research outputs found

    Perturbation Expansion for Option Pricing with Stochastic Volatility

    Full text link
    We fit the volatility fluctuations of the S&P 500 index well by a Chi distribution, and the distribution of log-returns by a corresponding superposition of Gaussian distributions. The Fourier transform of this is, remarkably, of the Tsallis type. An option pricing formula is derived from the same superposition of Black-Scholes expressions. An explicit analytic formula is deduced from a perturbation expansion around a Black-Scholes formula with the mean volatility. The expansion has two parts. The first takes into account the non-Gaussian character of the stock-fluctuations and is organized by powers of the excess kurtosis, the second is contract based, and is organized by the moments of moneyness of the option. With this expansion we show that for the Dow Jones Euro Stoxx 50 option data, a Delta-hedging strategy is close to being optimal.Comment: 33 pages, 13 figures, LaTeX

    Exponential Time Integration and Second-Order Difference Scheme for a Generalized Black-Scholes Equation

    Get PDF
    We apply an exponential time integration scheme combined with a central difference scheme on a piecewise uniform mesh with respect to the spatial variable to evaluate a generalized Black-Scholes equation. We show that the scheme is second-order convergent for both time and spatial variables. It is proved that the scheme is unconditionally stable. Numerical results support the theoretical results

    FX Smile in the Heston Model

    Get PDF
    The Heston model stands out from the class of stochastic volatility (SV) models mainly for two reasons. Firstly, the process for the volatility is non-negative and mean-reverting, which is what we observe in the markets. Secondly, there exists a fast and easily implemented semi-analytical solution for European options. In this article we adapt the original work of Heston (1993) to a foreign exchange (FX) setting. We discuss the computational aspects of using the semi-analytical formulas, performing Monte Carlo simulations, checking the Feller condition, and option pricing with FFT. In an empirical study we show that the smile of vanilla options can be reproduced by suitably calibrating three out of five model parameters.Comment: Chapter prepared for the 2nd edition of Statistical Tools for Finance and Insurance, P.Cizek, W.Haerdle, R.Weron (eds.), Springer-Verlag, forthcoming in 201

    Some extensions of the Black-Scholes and Cox-Ingersoll-Ross models

    Get PDF
    In this thesis we will study some financial problems concerning the option pricing in complete and incomplete markets and the bond pricing in the short-term interest rates framework. We start from well known models in pricing options or zero-coupon bonds, as the Black-Scholes model and the Cox-Ingersoll-Ross model and study some their generalizations. In particular, in the first part of the thesis, we study a generalized Black-Scholes equation to derive explicit or approximate solutions of an option pricing problem in incomplete market where the incompleteness is generated by the presence of a non-traded asset. Our aim is to give a closed form representation of the indifference price by using the analytic tool of (C0) semigroup theory. The second part of the thesis deals with the problem of forecasting future interest rates from observed financial market data. We propose a new numerical methodology for the CIR framework, which we call the CIR# model, that well fits the term structure of short interest rates as observed in a real market
    • …
    corecore