644 research outputs found

    Probabilistic Tools for the Analysis of Randomized Optimization Heuristics

    Full text link
    This chapter collects several probabilistic tools that proved to be useful in the analysis of randomized search heuristics. This includes classic material like Markov, Chebyshev and Chernoff inequalities, but also lesser known topics like stochastic domination and coupling or Chernoff bounds for geometrically distributed random variables and for negatively correlated random variables. Most of the results presented here have appeared previously, some, however, only in recent conference publications. While the focus is on collecting tools for the analysis of randomized search heuristics, many of these may be useful as well in the analysis of classic randomized algorithms or discrete random structures.Comment: 91 page

    Upper Bounds on the Runtime of the Univariate Marginal Distribution Algorithm on OneMax

    Full text link
    A runtime analysis of the Univariate Marginal Distribution Algorithm (UMDA) is presented on the OneMax function for wide ranges of its parameters μ\mu and λ\lambda. If μclogn\mu\ge c\log n for some constant c>0c>0 and λ=(1+Θ(1))μ\lambda=(1+\Theta(1))\mu, a general bound O(μn)O(\mu n) on the expected runtime is obtained. This bound crucially assumes that all marginal probabilities of the algorithm are confined to the interval [1/n,11/n][1/n,1-1/n]. If μcnlogn\mu\ge c' \sqrt{n}\log n for a constant c>0c'>0 and λ=(1+Θ(1))μ\lambda=(1+\Theta(1))\mu, the behavior of the algorithm changes and the bound on the expected runtime becomes O(μn)O(\mu\sqrt{n}), which typically even holds if the borders on the marginal probabilities are omitted. The results supplement the recently derived lower bound Ω(μn+nlogn)\Omega(\mu\sqrt{n}+n\log n) by Krejca and Witt (FOGA 2017) and turn out as tight for the two very different values μ=clogn\mu=c\log n and μ=cnlogn\mu=c'\sqrt{n}\log n. They also improve the previously best known upper bound O(nlognloglogn)O(n\log n\log\log n) by Dang and Lehre (GECCO 2015).Comment: Version 4: added illustrations and experiments; improved presentation in Section 2.2; to appear in Algorithmica; the final publication is available at Springer via http://dx.doi.org/10.1007/s00453-018-0463-

    Runtime Analysis for Self-adaptive Mutation Rates

    Full text link
    We propose and analyze a self-adaptive version of the (1,λ)(1,\lambda) evolutionary algorithm in which the current mutation rate is part of the individual and thus also subject to mutation. A rigorous runtime analysis on the OneMax benchmark function reveals that a simple local mutation scheme for the rate leads to an expected optimization time (number of fitness evaluations) of O(nλ/logλ+nlogn)O(n\lambda/\log\lambda+n\log n) when λ\lambda is at least ClnnC \ln n for some constant C>0C > 0. For all values of λClnn\lambda \ge C \ln n, this performance is asymptotically best possible among all λ\lambda-parallel mutation-based unbiased black-box algorithms. Our result shows that self-adaptation in evolutionary computation can find complex optimal parameter settings on the fly. At the same time, it proves that a relatively complicated self-adjusting scheme for the mutation rate proposed by Doerr, Gie{\ss}en, Witt, and Yang~(GECCO~2017) can be replaced by our simple endogenous scheme. On the technical side, the paper contributes new tools for the analysis of two-dimensional drift processes arising in the analysis of dynamic parameter choices in EAs, including bounds on occupation probabilities in processes with non-constant drift

    An Exponential Lower Bound for the Runtime of the cGA on Jump Functions

    Full text link
    In the first runtime analysis of an estimation-of-distribution algorithm (EDA) on the multi-modal jump function class, Hasen\"ohrl and Sutton (GECCO 2018) proved that the runtime of the compact genetic algorithm with suitable parameter choice on jump functions with high probability is at most polynomial (in the dimension) if the jump size is at most logarithmic (in the dimension), and is at most exponential in the jump size if the jump size is super-logarithmic. The exponential runtime guarantee was achieved with a hypothetical population size that is also exponential in the jump size. Consequently, this setting cannot lead to a better runtime. In this work, we show that any choice of the hypothetical population size leads to a runtime that, with high probability, is at least exponential in the jump size. This result might be the first non-trivial exponential lower bound for EDAs that holds for arbitrary parameter settings.Comment: To appear in the Proceedings of FOGA 2019. arXiv admin note: text overlap with arXiv:1903.1098

    Comma Selection Outperforms Plus Selection on OneMax with Randomly Planted Optima

    Full text link
    It is an ongoing debate whether and how comma selection in evolutionary algorithms helps to escape local optima. We propose a new benchmark function to investigate the benefits of comma selection: OneMax with randomly planted local optima, generated by frozen noise. We show that comma selection (the (1,λ)(1,\lambda) EA) is faster than plus selection (the (1+λ)(1+\lambda) EA) on this benchmark, in a fixed-target scenario, and for offspring population sizes λ\lambda for which both algorithms behave differently. For certain parameters, the (1,λ)(1,\lambda) EA finds the target in Θ(nlnn)\Theta(n \ln n) evaluations, with high probability (w.h.p.), while the (1+λ)(1+\lambda) EA) w.h.p. requires almost Θ((nlnn)2)\Theta((n\ln n)^2) evaluations. We further show that the advantage of comma selection is not arbitrarily large: w.h.p. comma selection outperforms plus selection at most by a factor of O(nlnn)O(n \ln n) for most reasonable parameter choices. We develop novel methods for analysing frozen noise and give powerful and general fixed-target results with tail bounds that are of independent interest.Comment: An extended abstract will be published at GECCO 202
    corecore