1,422 research outputs found

    Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions

    Get PDF
    Abstract not availableH.R. Maier, Z. Kapelan, Kasprzyk, J. Kollat, L.S. Matott, M.C. Cunha, G.C. Dandy, M.S. Gibbs, E. Keedwell, A. Marchi, A. Ostfeld, D. Savic, D.P. Solomatine, J.A. Vrugt, A.C. Zecchin, B.S. Minsker, E.J. Barbour, G. Kuczera, F. Pasha, A. Castelletti, M. Giuliani, P.M. Ree

    Prescriptive formalism for constructing domain-specific evolutionary algorithms

    Get PDF
    It has been widely recognised in the computational intelligence and machine learning communities that the key to understanding the behaviour of learning algorithms is to understand what representation is employed to capture and manipulate knowledge acquired during the learning process. However, traditional evolutionary algorithms have tended to employ a fixed representation space (binary strings), in order to allow the use of standardised genetic operators. This approach leads to complications for many problem domains, as it forces a somewhat artificial mapping between the problem variables and the canonical binary representation, especially when there are dependencies between problem variables (e.g. problems naturally defined over permutations). This often obscures the relationship between genetic structure and problem features, making it difficult to understand the actions of the standard genetic operators with reference to problem-specific structures. This thesis instead advocates m..

    In pursuit of autonomous distributed satellite systems

    Get PDF
    Satellite imagery has become an essential resource for environmental, humanitarian, and industrial endeavours. As a means to satisfy the requirements of new applications and user needs, novel Earth Observation (EO) systems are exploring the suitability of Distributed Satellite Systems (DSS) in which multiple observation assets concurrently sense the Earth. Given the temporal and spatial resolution requirements of EO products, DSS are often envisioned as large-scale systems with multiple sensing capabilities operating in a networked manner. Enabled by the consolidation of small satellite platforms and fostered by the emerging capabilities of distributed systems, these new architectures pose multiple design and operational challenges. Two of them are the main pillars of this research, namely, the conception of decision-support tools to assist the architecting process of a DSS, and the design of autonomous operational frameworks based on decentralised, on-board decision-making. The first part of this dissertation addresses the architecting of heterogeneous, networked DSS architectures that hybridise small satellite platforms with traditional EO assets. We present a generic design-oriented optimisation framework based on tradespace exploration methodologies. The goals of this framework are twofold: to select the most optimal constellation design; and to facilitate the identification of design trends, unfeasible regions, and tensions among architectural attributes. Oftentimes in EO DSS, system requirements and stakeholder preferences are not only articulated through functional attributes (i.e. resolution, revisit time, etc.) or monetary constraints, but also through qualitative traits such as flexibility, evolvability, robustness, or resiliency, amongst others. In line with that, the architecting framework defines a single figure of merit that aggregates quantitative attributes and qualitative ones-the so-called ilities of a system. With that, designers can steer the design of DSS both in terms of performance or cost, and in terms of their high-level characteristics. The application of this optimisation framework has been illustrated in two timely use-cases identified in the context of the EU-funded ONION project: a system that measures ocean and ice parameters in Polar regions to facilitate weather forecast and off-shore operations; and a system that provides agricultural variables crucial for global management of water stress, crop state, and draughts. The analysis of architectural features facilitated a comprehensive understanding of the functional and operational characteristics of DSS. With that, this thesis continues to delve into the design of DSS by focusing on one particular functional trait: autonomy. The minimisation of human-operator intervention has been traditionally sought in other space systems and can be especially critical for large-scale, structurally dynamic, heterogeneous DSS. In DSS, autonomy is expected to cope with the likely inability to operate very large-scale systems in a centralised manner, to improve the science return, and to leverage many of their emerging capabilities (e.g. tolerance to failures, adaptability to changing structures and user needs, responsiveness). We propose an autonomous operational framework that provides decentralised decision-making capabilities to DSS by means of local reasoning and individual resource allocation, and satellite-to-satellite interactions. In contrast to previous works, the autonomous decision-making framework is evaluated in this dissertation for generic constellation designs the goal of which is to minimise global revisit times. As part of the characterisation of our solution, we stressed the implications that autonomous operations can have upon satellite platforms with stringent resource constraints (e.g. power, memory, communications capabilities) and evaluated the behaviour of the solution for a large-scale DSS composed of 117 CubeSat-like satellite units.La imatgeria per satèl·lit ha esdevingut un recurs essencial per assolir tasques ambientals, humanitàries o industrials. Per tal de satisfer els requeriments de les noves aplicacions i usuaris, els sistemes d’observació de la Terra (OT) estan explorant la idoneïtat dels Sistemes de Satèl·lit Distribuïts (SSD), on múltiples observatoris espacials mesuren el planeta simultàniament. Degut al les resolucions temporals i espacials requerides, els SSD sovint es conceben com sistemes de gran escala que operen en xarxa. Aquestes noves arquitectures promouen les capacitats emergents dels sistemes distribuïts i, tot i que són possibles gràcies a l’acceptació de les plataformes de satèl·lits petits, encara presenten molts reptes en quant al disseny i operacions. Dos d’ells són els pilars principals d’aquesta tesi, en concret, la concepció d’eines de suport a la presa de decisions pel disseny de SSD, i la definició d’operacions autònomes basades en gestió descentralitzada a bord dels satèl·lits. La primera part d’aquesta dissertació es centra en el disseny arquitectural de SSD heterogenis i en xarxa, imbricant tecnologies de petits satèl·lits amb actius tradicionals. Es presenta un entorn d’optimització orientat al disseny basat en metodologies d’exploració i comparació de solucions. Els objectius d’aquest entorn són: la selecció el disseny de constel·lació més òptim; i facilitar la identificació de tendències de disseny, regions d’incompatibilitat, i tensions entre atributs arquitecturals. Sovint en els SSD d’OT, els requeriments del sistema i l’expressió de prioritats no només s’articulen en quant als atributs funcionals o les restriccions monetàries, sinó també a través de les característiques qualitatives com la flexibilitat, l’evolucionabilitat, la robustesa, o la resiliència, entre d’altres. En línia amb això, l’entorn d’optimització defineix una única figura de mèrit que agrega rendiment, cost i atributs qualitatius. Així l’equip de disseny pot influir en les solucions del procés d’optimització tant en els aspectes quantitatius, com en les característiques dalt nivell. L’aplicació d’aquest entorn d’optimització s’il·lustra en dos casos d’ús actuals identificats en context del projecte europeu ONION: un sistema que mesura paràmetres de l’oceà i gel als pols per millorar la predicció meteorològica i les operacions marines; i un sistema que obté mesures agronòmiques vitals per la gestió global de l’aigua, l’estimació d’estat dels cultius, i la gestió de sequeres. L’anàlisi de propietats arquitecturals ha permès copsar de manera exhaustiva les característiques funcionals i operacionals d’aquests sistemes. Amb això, la tesi ha seguit aprofundint en el disseny de SSD centrant-se, particularment, en un tret funcional: l’autonomia. Minimitzar la intervenció de l’operador humà és comú en altres sistemes espacials i podria ser especialment crític pels SSD de gran escala, d’estructura dinàmica i heterogenis. En els SSD s’espera que l’autonomia solucioni la possible incapacitat d’operar sistemes de gran escala de forma centralitzada, que millori el retorn científic i que n’apuntali les seves propietats emergents (e.g. tolerància a errors, adaptabilitat a canvis estructural i de necessitats d’usuari, capacitat de resposta). Es proposa un sistema d’operacions autònomes que atorga la capacitat de gestionar els sistemes de forma descentralitzada, a través del raonament local, l’assignació individual de recursos, i les interaccions satèl·lit-a-satèl·lit. Al contrari que treballs anteriors, la presa de decisions autònoma s’avalua per constel·lacions que tenen com a objectius de missió la minimització del temps de revisita global

    In pursuit of autonomous distributed satellite systems

    Get PDF
    A la pàgina 265 diu: "In an effort to facilitate the reproduction of results, both the source code of the simulation environment and the configuration files that were prepared for the design characterisation are available in an open repository: https://github.com/carlesaraguz/aeossSatellite imagery has become an essential resource for environmental, humanitarian, and industrial endeavours. As a means to satisfy the requirements of new applications and user needs, novel Earth Observation (EO) systems are exploring the suitability of Distributed Satellite Systems (DSS) in which multiple observation assets concurrently sense the Earth. Given the temporal and spatial resolution requirements of EO products, DSS are often envisioned as large-scale systems with multiple sensing capabilities operating in a networked manner. Enabled by the consolidation of small satellite platforms and fostered by the emerging capabilities of distributed systems, these new architectures pose multiple design and operational challenges. Two of them are the main pillars of this research, namely, the conception of decision-support tools to assist the architecting process of a DSS, and the design of autonomous operational frameworks based on decentralised, on-board decision-making. The first part of this dissertation addresses the architecting of heterogeneous, networked DSS architectures that hybridise small satellite platforms with traditional EO assets. We present a generic design-oriented optimisation framework based on tradespace exploration methodologies. The goals of this framework are twofold: to select the most optimal constellation design; and to facilitate the identification of design trends, unfeasible regions, and tensions among architectural attributes. Oftentimes in EO DSS, system requirements and stakeholder preferences are not only articulated through functional attributes (i.e. resolution, revisit time, etc.) or monetary constraints, but also through qualitative traits such as flexibility, evolvability, robustness, or resiliency, amongst others. In line with that, the architecting framework defines a single figure of merit that aggregates quantitative attributes and qualitative ones-the so-called ilities of a system. With that, designers can steer the design of DSS both in terms of performance or cost, and in terms of their high-level characteristics. The application of this optimisation framework has been illustrated in two timely use-cases identified in the context of the EU-funded ONION project: a system that measures ocean and ice parameters in Polar regions to facilitate weather forecast and off-shore operations; and a system that provides agricultural variables crucial for global management of water stress, crop state, and draughts. The analysis of architectural features facilitated a comprehensive understanding of the functional and operational characteristics of DSS. With that, this thesis continues to delve into the design of DSS by focusing on one particular functional trait: autonomy. The minimisation of human-operator intervention has been traditionally sought in other space systems and can be especially critical for large-scale, structurally dynamic, heterogeneous DSS. In DSS, autonomy is expected to cope with the likely inability to operate very large-scale systems in a centralised manner, to improve the science return, and to leverage many of their emerging capabilities (e.g. tolerance to failures, adaptability to changing structures and user needs, responsiveness). We propose an autonomous operational framework that provides decentralised decision-making capabilities to DSS by means of local reasoning and individual resource allocation, and satellite-to-satellite interactions. In contrast to previous works, the autonomous decision-making framework is evaluated in this dissertation for generic constellation designs the goal of which is to minimise global revisit times. As part of the characterisation of our solution, we stressed the implications that autonomous operations can have upon satellite platforms with stringent resource constraints (e.g. power, memory, communications capabilities) and evaluated the behaviour of the solution for a large-scale DSS composed of 117 CubeSat-like satellite units.La imatgeria per satèl·lit ha esdevingut un recurs essencial per assolir tasques ambientals, humanitàries o industrials. Per tal de satisfer els requeriments de les noves aplicacions i usuaris, els sistemes d’observació de la Terra (OT) estan explorant la idoneïtat dels Sistemes de Satèl·lit Distribuïts (SSD), on múltiples observatoris espacials mesuren el planeta simultàniament. Degut al les resolucions temporals i espacials requerides, els SSD sovint es conceben com sistemes de gran escala que operen en xarxa. Aquestes noves arquitectures promouen les capacitats emergents dels sistemes distribuïts i, tot i que són possibles gràcies a l’acceptació de les plataformes de satèl·lits petits, encara presenten molts reptes en quant al disseny i operacions. Dos d’ells són els pilars principals d’aquesta tesi, en concret, la concepció d’eines de suport a la presa de decisions pel disseny de SSD, i la definició d’operacions autònomes basades en gestió descentralitzada a bord dels satèl·lits. La primera part d’aquesta dissertació es centra en el disseny arquitectural de SSD heterogenis i en xarxa, imbricant tecnologies de petits satèl·lits amb actius tradicionals. Es presenta un entorn d’optimització orientat al disseny basat en metodologies d’exploració i comparació de solucions. Els objectius d’aquest entorn són: la selecció el disseny de constel·lació més òptim; i facilitar la identificació de tendències de disseny, regions d’incompatibilitat, i tensions entre atributs arquitecturals. Sovint en els SSD d’OT, els requeriments del sistema i l’expressió de prioritats no només s’articulen en quant als atributs funcionals o les restriccions monetàries, sinó també a través de les característiques qualitatives com la flexibilitat, l’evolucionabilitat, la robustesa, o la resiliència, entre d’altres. En línia amb això, l’entorn d’optimització defineix una única figura de mèrit que agrega rendiment, cost i atributs qualitatius. Així l’equip de disseny pot influir en les solucions del procés d’optimització tant en els aspectes quantitatius, com en les característiques dalt nivell. L’aplicació d’aquest entorn d’optimització s’il·lustra en dos casos d’ús actuals identificats en context del projecte europeu ONION: un sistema que mesura paràmetres de l’oceà i gel als pols per millorar la predicció meteorològica i les operacions marines; i un sistema que obté mesures agronòmiques vitals per la gestió global de l’aigua, l’estimació d’estat dels cultius, i la gestió de sequeres. L’anàlisi de propietats arquitecturals ha permès copsar de manera exhaustiva les característiques funcionals i operacionals d’aquests sistemes. Amb això, la tesi ha seguit aprofundint en el disseny de SSD centrant-se, particularment, en un tret funcional: l’autonomia. Minimitzar la intervenció de l’operador humà és comú en altres sistemes espacials i podria ser especialment crític pels SSD de gran escala, d’estructura dinàmica i heterogenis. En els SSD s’espera que l’autonomia solucioni la possible incapacitat d’operar sistemes de gran escala de forma centralitzada, que millori el retorn científic i que n’apuntali les seves propietats emergents (e.g. tolerància a errors, adaptabilitat a canvis estructural i de necessitats d’usuari, capacitat de resposta). Es proposa un sistema d’operacions autònomes que atorga la capacitat de gestionar els sistemes de forma descentralitzada, a través del raonament local, l’assignació individual de recursos, i les interaccions satèl·lit-a-satèl·lit. Al contrari que treballs anteriors, la presa de decisions autònoma s’avalua per constel·lacions que tenen com a objectius de missió la minimització del temps de revisita global.Postprint (published version

    Benchmarking for Metaheuristic Black-Box Optimization: Perspectives and Open Challenges

    Full text link
    Research on new optimization algorithms is often funded based on the motivation that such algorithms might improve the capabilities to deal with real-world and industrially relevant optimization challenges. Besides a huge variety of different evolutionary and metaheuristic optimization algorithms, also a large number of test problems and benchmark suites have been developed and used for comparative assessments of algorithms, in the context of global, continuous, and black-box optimization. For many of the commonly used synthetic benchmark problems or artificial fitness landscapes, there are however, no methods available, to relate the resulting algorithm performance assessments to technologically relevant real-world optimization problems, or vice versa. Also, from a theoretical perspective, many of the commonly used benchmark problems and approaches have little to no generalization value. Based on a mini-review of publications with critical comments, advice, and new approaches, this communication aims to give a constructive perspective on several open challenges and prospective research directions related to systematic and generalizable benchmarking for black-box optimization

    Classification using Dopant Network Processing Units

    Get PDF

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Managing Distributed Cloud Applications and Infrastructure

    Get PDF
    The emergence of the Internet of Things (IoT), combined with greater heterogeneity not only online in cloud computing architectures but across the cloud-to-edge continuum, is introducing new challenges for managing applications and infrastructure across this continuum. The scale and complexity is simply so complex that it is no longer realistic for IT teams to manually foresee the potential issues and manage the dynamism and dependencies across an increasing inter-dependent chain of service provision. This Open Access Pivot explores these challenges and offers a solution for the intelligent and reliable management of physical infrastructure and the optimal placement of applications for the provision of services on distributed clouds. This book provides a conceptual reference model for reliable capacity provisioning for distributed clouds and discusses how data analytics and machine learning, application and infrastructure optimization, and simulation can deliver quality of service requirements cost-efficiently in this complex feature space. These are illustrated through a series of case studies in cloud computing, telecommunications, big data analytics, and smart cities
    • …
    corecore