1,019 research outputs found

    Fisher Zeros and Correlation Decay in the Ising Model

    Get PDF
    The Ising model originated in statistical physics as a means of studying phase transitions in magnets, and has been the object of intensive study for almost a century. Combinatorially, it can be viewed as a natural distribution over cuts in a graph, and it has also been widely studied in computer science, especially in the context of approximate counting and sampling. In this paper, we study the complex zeros of the partition function of the Ising model, viewed as a polynomial in the "interaction parameter"; these are known as Fisher zeros in light of their introduction by Fisher in 1965. While the zeros of the partition function as a polynomial in the "field" parameter have been extensively studied since the classical work of Lee and Yang, comparatively little is known about Fisher zeros. Our main result shows that the zero-field Ising model has no Fisher zeros in a complex neighborhood of the entire region of parameters where the model exhibits correlation decay. In addition to shedding light on Fisher zeros themselves, this result also establishes a formal connection between two distinct notions of phase transition for the Ising model: the absence of complex zeros (analyticity of the free energy, or the logarithm of the partition function) and decay of correlations with distance. We also discuss the consequences of our result for efficient deterministic approximation of the partition function. Our proof relies heavily on algorithmic techniques, notably Weitz\u27s self-avoiding walk tree, and as such belongs to a growing body of work that uses algorithmic methods to resolve classical questions in statistical physics

    The Ising Partition Function: Zeros and Deterministic Approximation

    Full text link
    We study the problem of approximating the partition function of the ferromagnetic Ising model in graphs and hypergraphs. Our first result is a deterministic approximation scheme (an FPTAS) for the partition function in bounded degree graphs that is valid over the entire range of parameters β\beta (the interaction) and λ\lambda (the external field), except for the case ∣λ∣=1\vert{\lambda}\vert=1 (the "zero-field" case). A randomized algorithm (FPRAS) for all graphs, and all β,λ\beta,\lambda, has long been known. Unlike most other deterministic approximation algorithms for problems in statistical physics and counting, our algorithm does not rely on the "decay of correlations" property. Rather, we exploit and extend machinery developed recently by Barvinok, and Patel and Regts, based on the location of the complex zeros of the partition function, which can be seen as an algorithmic realization of the classical Lee-Yang approach to phase transitions. Our approach extends to the more general setting of the Ising model on hypergraphs of bounded degree and edge size, where no previous algorithms (even randomized) were known for a wide range of parameters. In order to achieve this extension, we establish a tight version of the Lee-Yang theorem for the Ising model on hypergraphs, improving a classical result of Suzuki and Fisher.Comment: clarified presentation of combinatorial arguments, added new results on optimality of univariate Lee-Yang theorem

    Asymptotic Correlations in Gapped and Critical Topological Phases of 1D Quantum Systems

    Get PDF
    Topological phases protected by symmetry can occur in gapped and---surprisingly---in critical systems. We consider non-interacting fermions in one dimension with spinless time-reversal symmetry. It is known that the phases are classified by a topological invariant ω\omega and a central charge cc. We investigate the correlations of string operators, giving insight into the interplay between topology and criticality. In the gapped phases, these non-local string order parameters allow us to extract ω\omega. Remarkably, ratios of correlation lengths are universal. In the critical phases, the scaling dimensions of these operators serve as an order parameter, encoding ω\omega and cc. We derive exact asymptotics of these correlation functions using Toeplitz determinant theory. We include physical discussion, e.g., relating lattice operators to the conformal field theory. Moreover, we discuss the dual spin chains. Using the aforementioned universality, the topological invariant of the spin chain can be obtained from correlations of local observables.Comment: 35 pages, 5 page appendi

    On spinodal points and Lee-Yang edge singularities

    Full text link
    We address a number of outstanding questions associated with the analytic properties of the universal equation of state of the ϕ4\phi^4 theory, which describes the critical behavior of the Ising model and ubiquitous critical points of the liquid-gas type. We focus on the relation between spinodal points that limit the domain of metastability for temperatures below the critical temperature, i.e., T<TcT < T_{\rm c}, and Lee-Yang edge singularities that restrict the domain of analyticity around the point of zero magnetic field HH for T>TcT > T_{\rm c}. The extended analyticity conjecture (due to Fonseca and Zamolodchikov) posits that, for T<TcT < T_{\rm c}, the Lee-Yang edge singularities are the closest singularities to the real HH axis. This has interesting implications, in particular, that the spinodal singularities must lie off the real HH axis for d<4d < 4, in contrast to the commonly known result of the mean-field approximation. We find that the parametric representation of the Ising equation of state obtained in the ε=4−d\varepsilon = 4-d expansion, as well as the equation of state of the O(N){\rm O}(N)-symmetric ϕ4\phi^4 theory at large NN, are both nontrivially consistent with the conjecture. We analyze the reason for the difficulty of addressing this issue using the ε\varepsilon expansion. It is related to the long-standing paradox associated with the fact that the vicinity of the Lee-Yang edge singularity is described by Fisher's ϕ3\phi^3 theory, which remains nonperturbative even for d→4d\to 4, where the equation of state of the ϕ4\phi^4 theory is expected to approach the mean-field result. We resolve this paradox by deriving the Ginzburg criterion that determines the size of the region around the Lee-Yang edge singularity where mean-field theory no longer applies.Comment: 26 pages, 8 figures; v2: shortened Sec. 4.1 and streamlined arguments/notation in Sec. 4.2, details moved to appendix, added reference 1

    The importance of the Ising model

    Full text link
    Understanding the relationship which integrable (solvable) models, all of which possess very special symmetry properties, have with the generic non-integrable models that are used to describe real experiments, which do not have the symmetry properties, is one of the most fundamental open questions in both statistical mechanics and quantum field theory. The importance of the two-dimensional Ising model in a magnetic field is that it is the simplest system where this relationship may be concretely studied. We here review the advances made in this study, and concentrate on the magnetic susceptibility which has revealed an unexpected natural boundary phenomenon. When this is combined with the Fermionic representations of conformal characters, it is suggested that the scaling theory, which smoothly connects the lattice with the correlation length scale, may be incomplete for H≠0H \neq 0.Comment: 33 page

    Characterizing correlations with full counting statistics: classical Ising and quantum XY spin chains

    Full text link
    We propose to describe correlations in classical and quantum systems in terms of full counting statistics of a suitably chosen discrete observable. The method is illustrated with two exactly solvable examples: the classical one-dimensional Ising model and the quantum spin-1/2 XY chain. For the one-dimensional Ising model, our method results in a phase diagram with two phases distinguishable by the long-distance behavior of the Jordan-Wigner strings. For the quantum XY chain, the method reproduces the previously known phase diagram.Comment: 6 pages, section on Lee-Yang zeros added, published versio

    Experimental observations of dynamic critical phenomena in a lipid membrane

    Full text link
    Near a critical point, the time scale of thermally-induced fluctuations diverges in a manner determined by the dynamic universality class. Experiments have verified predicted 3D dynamic critical exponents in many systems, but similar experiments in 2D have been lacking for the case of conserved order parameter. Here we analyze time-dependent correlation functions of a quasi-2D lipid bilayer in water to show that its critical dynamics agree with a recently predicted universality class. In particular, the effective dynamic exponent zeffz_{\text{eff}} crosses over from ∼2\sim 2 to ∼3\sim 3 as the correlation length of fluctuations exceeds a hydrodynamic length set by the membrane and bulk viscosities.Comment: 5 pages, 3 figures and 2 additional pages of supplemen
    • …
    corecore