420 research outputs found

    Statistical modeling of polarimetric SAR data: a survey and challenges

    Get PDF
    Knowledge of the exact statistical properties of the signal plays an important role in the applications of Polarimetric Synthetic Aperture Radar (PolSAR) data. In the last three decades, a considerable research effort has been devoted to finding accurate statistical models for PolSAR data, and a number of distributions have been proposed. In order to see the differences of various models and to make a comparison among them, a survey is provided in this paper. Texture models, which could capture the non-Gaussian behavior observed in high resolution data, and yet keep a compact mathematical form, are mainly explained. Probability density functions for the single look data and the multilook data are reviewed, as well as the advantages and applicable context of those models. As a summary, challenges in the area of statistical analysis of PolSAR data are also discussed.Peer ReviewedPostprint (published version

    Segmentation and Classification of Polarimetric SAR Data based on the KummerU Distribution

    Get PDF
    International audienceThinner spatial features can be observed from the high resolution of newly available spaceborne and airborne SAR images. Heterogeneous clutter models should be used to model the covariance matrix because each resolution cell contains only a small number of scatterers. In this paper, we focus on the use of a Fisher probability density function (pdf) to model the SAR clutter. First, the benefit of using such a pdf is exposed. Covariance matrix statistics are then analyzed in details. For a Fisher distributed texture, the covariance matrix follows a KummerU pdf. Asymptotic cases of this pdf are presented. Finally, the KummerU pdf is implemented in both hierarchical segmentation and classification algorithms. Segmentation and classification results are shown on both synthetic and real data

    Heterogeneous Clutter Models for Change Detection in PolSAR Imagery

    Get PDF
    International audienceThe new generation of Synthetic Aperture Radar (RADARSAT-2, TerraSAR-X, ALOS, . . . ) allows us to capture Earth surface images with very high resolution. Therefore the possibility to characterize objects has become more and more attainable. Moreover, the short revisit time propertie of these satellites enables the development of techniques of change detection and their applications. Spherically Invariant Random Vector (SIRV) model was designed specifically for the analysis of heterogeneous clutters in high resolution radar images. In this paper, we propose four algorithms of change detection based on different criteria including: Gaussian (sample covariance matrix estimator), Gaussian (fixed point estimator), Fisher texture-based and KummerU-based (Fisher distributed texture)

    Hierarchical Segmentation of Polarimetric SAR Images Using Heterogeneous Clutter Models

    Get PDF
    International audienceIn this paper, heterogeneous clutter models are used to describe polarimetric synthetic aperture radar (PolSAR) data. The KummerU distribution is introduced to model the PolSAR clutter. Then, a detailed analysis is carried out to evaluate the potential of this new multivariate distribution. It is implemented in a hierarchical maximum likelihood segmentation algorithm. The segmentation results are shown on both synthetic and high-resolution PolSAR data at the X- and L-bands. Finally, some methods are examined to determine automatically the "optimal" number of segments in the final partition

    Displacement Estimation by Maximum Likelihood Texture Tracking

    No full text
    International audienceThis paper presents a novel method to estimate displacement by maximum-likelihood (ML) texture tracking. The observed polarimetric synthetic aperture radar (PolSAR) data-set is composed by two terms: the scalar texture parameter and the speckle component. Based on the Spherically Invariant Random Vectors (SIRV) theory, the ML estimator of the texture is computed. A generalization of the ML texture tracking based on the Fisher probability density function (pdf) modeling is introduced. For random variables with Fisher distributions, the ratio distribution is established. The proposed method is tested with both simulated PolSAR data and spaceborne PolSAR images provided by the TerraSAR-X (TSX) and the RADARSAT-2 (RS-2) sensors

    Segmentation and Classification of Polarimetric SAR Data based on the KummerU Distribution

    Get PDF
    International audienceThinner spatial features can be observed from the high resolution of newly available spaceborne and airborne SAR images. Heterogeneous clutter models should be used to model the covariance matrix because each resolution cell contains only a small number of scatterers. In this paper, we focus on the use of a Fisher probability density function (pdf) to model the SAR clutter. First, the benefit of using such a pdf is exposed. Covariance matrix statistics are then analyzed in details. For a Fisher distributed texture, the covariance matrix follows a KummerU pdf. Asymptotic cases of this pdf are presented. Finally, the KummerU pdf is implemented in both hierarchical segmentation and classification algorithms. Segmentation and classification results are shown on both synthetic and real data

    CFAR Ship Detection in Polarimetric Synthetic Aperture Radar Images Based on Whitening Filter

    Get PDF
    Polarimetric whitening filter (PWF) can be used to filter polarimetric synthetic aperture radar (PolSAR) images to improve the contrast between ships and sea clutter background. For this reason, the output of the filter can be used to detect ships. This paper deals with the setting of the threshold over PolSAR images filtered by the PWF. Two parameter-constant false alarm rate (2P-CFAR) is a common detection method used on whitened polarimetric images. It assumes that the probability density function (PDF) of the filtered image intensity is characterized by a log-normal distribution. However, this assumption does not always hold. In this paper, we propose a systemic analytical framework for CFAR algorithms based on PWF or multi-look PWF (MPWF). The framework covers the entire log-cumulants space in terms of the textural distributions in the product model, including the constant, gamma, inverse gamma, Fisher, beta, inverse beta, and generalized gamma distributions (GΓDs). We derive the analytical forms of the PDF for each of the textural distributions and the probability of false alarm (PFA). Finally, the threshold is derived by fixing the false alarm rate (FAR). Experimental results using both the simulated and real data demonstrate that the derived expressions and CFAR algorithms are valid and robust
    • …
    corecore