17,566 research outputs found

    Haptic Interface for Center of Workspace Interaction

    Get PDF
    We build upon a new interaction style for 3D interfaces, called the center of workspace interaction. This style of interaction is defined with respect to a central fixed point in 3D space, conceptually within arm\u27s length of the user. For demonstration, we show a haptically enabled fish tank VR that utilizes a set of interaction widgets to support rapid navigation within a large virtual space. The fish tank VR refers to the creation of a small but high quality virtual reality that combines a number of technologies, such as head-tracking and stereo glasses, to their mutual advantag

    A Virtual Testbed for Fish-Tank Virtual Reality: Improving Calibration with a Virtual-in-Virtual Display

    Get PDF
    With the development of novel calibration techniques for multimedia projectors and curved projection surfaces, volumetric 3D displays are becoming easier and more affordable to build. The basic requirements include a display shape that defines the volume (e.g. a sphere, cylinder, or cuboid) and a tracking system to provide each user's location for the perspective corrected rendering. When coupled with modern graphics cards, these displays are capable of high resolution, low latency, high frame rate, and even stereoscopic rendering; however, like many previous studies have shown, every component must be precisely calibrated for a compelling 3D effect. While human perceptual requirements have been extensively studied for head-tracked displays, most studies featured seated users in front of a flat display. It remains unclear if results from these flat display studies are applicable to newer, walk-around displays with enclosed or curved shapes. To investigate these issues, we developed a virtual testbed for volumetric head-tracked displays that can measure calibration accuracy of the entire system in real-time. We used this testbed to investigate visual distortions of prototype curved displays, improve existing calibration techniques, study the importance of stereo to performance and perception, and validate perceptual calibration with novice users. Our experiments show that stereo is important for task performance, but requires more accurate calibration, and that novice users can make effective use of perceptual calibration tools. We also propose a novel, real-time calibration method that can be used to fine-tune an existing calibration using perceptual feedback. The findings from this work can be used to build better head-tracked volumetric displays with an unprecedented amount of 3D realism and intuitive calibration tools for novice users

    Haptic-GeoZui3D: Exploring the Use of Haptics in AUV Path Planning

    Get PDF
    We have developed a desktop virtual reality system that we call Haptic-GeoZui3D, which brings together 3D user interaction and visualization to provide a compelling environment for AUV path planning. A key component in our system is the PHANTOM haptic device (SensAble Technologies, Inc.), which affords a sense of touch and force feedback – haptics – to provide cues and constraints to guide the user’s interaction. This paper describes our system, and how we use haptics to significantly augment our ability to lay out a vehicle path. We show how our system works well for quickly defining simple waypoint-towaypoint (e.g. transit) path segments, and illustrate how it could be used in specifying more complex, highly segmented (e.g. lawnmower survey) paths

    Viewing a Graph in a Virtual Reality Display is Three Times as Good as a 2D Diagram

    Get PDF
    An experiment is reported which tests whether network information is more effectively displayed in a three dimensional space than in a two dimensional space. The experimental task is to trace a path in a network and the experiment is carried out in 2D, in a 3D stereo view, in a 2D view with head coupled perspective, and in a 3D stereo view with head coupled perspective; this last condition creates a localized virtual reality display. The results show that the motion parallax obtained from the head coupling of perspective is more important than stereopsis in revealing structural information. Overall the results show that three times as much information can be perceived in the head coupled stereo view as in the 2D view

    Sparse Coding Predicts Optic Flow Specificities of Zebrafish Pretectal Neurons

    Full text link
    Zebrafish pretectal neurons exhibit specificities for large-field optic flow patterns associated with rotatory or translatory body motion. We investigate the hypothesis that these specificities reflect the input statistics of natural optic flow. Realistic motion sequences were generated using computer graphics simulating self-motion in an underwater scene. Local retinal motion was estimated with a motion detector and encoded in four populations of directionally tuned retinal ganglion cells, represented as two signed input variables. This activity was then used as input into one of two learning networks: a sparse coding network (competitive learning) and backpropagation network (supervised learning). Both simulations develop specificities for optic flow which are comparable to those found in a neurophysiological study (Kubo et al. 2014), and relative frequencies of the various neuronal responses are best modeled by the sparse coding approach. We conclude that the optic flow neurons in the zebrafish pretectum do reflect the optic flow statistics. The predicted vectorial receptive fields show typical optic flow fields but also "Gabor" and dipole-shaped patterns that likely reflect difference fields needed for reconstruction by linear superposition.Comment: Published Conference Paper from ICANN 2018, Rhode

    AISR Connections, Fall 2009 (2009-2010 Orientation Issue)

    Get PDF

    The Exhibition of Oceans A History of the ʻImmersive Exhibitionʼ at Public Aquariums from the 19th to the 21st Century

    Get PDF
    This paper aims to trace the history of the ‘immersive exhibition’ at public aquariums from the 19th to the 21st century, with reference to technological developments as well as the social and cultural background of these exhibits. We also take a look at what these kinds of exhibitions might look like in the near future.In this paper, we also consider the ‘reality’ presented by aquarium exhibitions. The simulated seascape cannot seem ‘realistic’ unless it meets visitors\u27 expectations. Therefore, aquarists have over time tried to reconstruct’ oceans’ so that visitors would feel as if the exhibition were ‘real’. The first section of this paper focuses on the features of early immersive exhibitions from the 19th to the beginning of the 20th century, comparing them with other visual cultural forms, such as the panorama. The second section treats aquariums from the 20th century to the beginning of the 21st century. We have selected here representative aquariums in Western and Eastern countries and analyse their exhibition styles. In the last section, which features the advent of new exhibitions that apply VR technology, we concisely discuss the exhibition that may appear in the near future

    3D interaction with scientific data : an experimental and perceptual approach

    Get PDF

    A virtual reality user interface for a design information system

    Get PDF
    The computer is a tool, a complex artefact that is used to extend our reach. A computer system can provide several kinds of services, but against these services stands a supplementary task that the user must deal with: the communication with the computer system. We argued that Virtual Reality (VR) can fundamentally improve the user interface by rendering on the common experiential skills of all users. We present the theoretical basis for this, referring to Donald Norman?s theory. We show that VR provides at least theoretically, the means to take a big step in the direction of an ideal user interface. As an example of a innovative application of VR in user interface design, we presented the VR-DIS system; an interdisciplinary design system for the building and construction industry. We discuss the issues underlying the design of its VR interface
    corecore