858 research outputs found

    First-order finite satisfiability vs tree automata in safety verification

    Get PDF
    In this paper we deal with verification of safety properties of term-rewriting systems. The verification problem is translated to a purely logical problem of finding a finite countermodel for a first-order formula, which further resolved by a generic finite model finding procedure. A finite countermodel produced during successful verification provides with a concise description of the system invariant sufficient to demonstrate a specific safety property. We show the relative completeness of this approach with respect to the tree automata completion technique. On a set of examples taken from the literature we demonstrate the efficiency of finite model finding approach as well as its explanatory power

    Finite Models vs Tree Automata in Safety Verification

    Get PDF
    In this paper we deal with verification of safety properties of term-rewriting systems. The verification problem is translated to a purely logical problem of finding a finite countermodel for a first-order formula, which is further resolved by a generic finite model finding procedure. A finite countermodel produced during successful verification provides with a concise description of the system invariant sufficient to demonstrate a specific safety property. We show the relative completeness of this approach with respect to the tree automata completion technique. On a set of examples taken from the literature we demonstrate the efficiency of finite model finding approach as well as its explanatory power

    A Temporal Logic for Hyperproperties

    Full text link
    Hyperproperties, as introduced by Clarkson and Schneider, characterize the correctness of a computer program as a condition on its set of computation paths. Standard temporal logics can only refer to a single path at a time, and therefore cannot express many hyperproperties of interest, including noninterference and other important properties in security and coding theory. In this paper, we investigate an extension of temporal logic with explicit path variables. We show that the quantification over paths naturally subsumes other extensions of temporal logic with operators for information flow and knowledge. The model checking problem for temporal logic with path quantification is decidable. For alternation depth 1, the complexity is PSPACE in the length of the formula and NLOGSPACE in the size of the system, as for linear-time temporal logic

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Complexity Hierarchies Beyond Elementary

    Full text link
    We introduce a hierarchy of fast-growing complexity classes and show its suitability for completeness statements of many non elementary problems. This hierarchy allows the classification of many decision problems with a non-elementary complexity, which occur naturally in logic, combinatorics, formal languages, verification, etc., with complexities ranging from simple towers of exponentials to Ackermannian and beyond.Comment: Version 3 is the published version in TOCT 8(1:3), 2016. I will keep updating the catalogue of problems from Section 6 in future revision

    Mightyl: A compositional translation from mitl to timed automata

    Get PDF
    Metric Interval Temporal Logic (MITL) was first proposed in the early 1990s as a specification formalism for real-time systems. Apart from its appealing intuitive syntax, there are also theoretical evidences that make MITL a prime real-time counterpart of Linear Temporal Logic (LTL). Unfortunately, the tool support for MITL verification is still lacking to this day. In this paper, we propose a new construction from MITL to timed automata via very-weak one-clock alternating timed automata. Our construction subsumes the well-known construction from LTL to BĂĽchi automata by Gastin and Oddoux and yet has the additional benefits of being compositional and integrating easily with existing tools. We implement the construction in our new tool MightyL and report on experiments using Uppaal and LTSmin as back-ends

    Logical and deep learning methods for temporal reasoning

    Get PDF
    In this thesis, we study logical and deep learning methods for the temporal reasoning of reactive systems. In Part I, we determine decidability borders for the satisfiability and realizability problem of temporal hyperproperties. Temporal hyperproperties relate multiple computation traces to each other and are expressed in a temporal hyperlogic. In particular, we identify decidable fragments of the highly expressive hyperlogics HyperQPTL and HyperCTL*. As an application, we elaborate on an enforcement mechanism for temporal hyperproperties. We study explicit enforcement algorithms for specifications given as formulas in universally quantified HyperLTL. In Part II, we train a (deep) neural network on the trace generation and realizability problem of linear-time temporal logic (LTL). We consider a method to generate large amounts of additional training data from practical specification patterns. The training data is generated with classical solvers, which provide one of many possible solutions to each formula. We demonstrate that it is sufficient to train on those particular solutions such that the neural network generalizes to the semantics of the logic. The neural network can predict solutions even for formulas from benchmarks from the literature on which the classical solver timed out. Additionally, we show that it solves a significant portion of problems from the annual synthesis competition (SYNTCOMP) and even out-of-distribution examples from a recent case study.Diese Arbeit befasst sich mit logischen Methoden und mehrschichtigen Lernmethoden für das zeitabhängige Argumentieren über reaktive Systeme. In Teil I werden die Grenzen der Entscheidbarkeit des Erfüllbarkeits- und des Realisierbarkeitsproblem von temporalen Hypereigenschaften bestimmt. Temporale Hypereigenschaften setzen mehrere Berechnungsspuren zueinander in Beziehung und werden in einer temporalen Hyperlogik ausgedrückt. Insbesondere werden entscheidbare Fragmente der hochexpressiven Hyperlogiken HyperQPTL und HyperCTL* identifiziert. Als Anwendung wird ein Enforcement-Mechanismus für temporale Hypereigenschaften erarbeitet. Explizite Enforcement-Algorithmen für Spezifikationen, die als Formeln in universell quantifiziertem HyperLTL angegeben werden, werden untersucht. In Teil II wird ein (mehrschichtiges) neuronales Netz auf den Problemen der Spurgenerierung und Realisierbarkeit von Linear-zeit Temporallogik (LTL) trainiert. Es wird eine Methode betrachtet, um aus praktischen Spezifikationsmustern große Mengen zusätzlicher Trainingsdaten zu generieren. Die Trainingsdaten werden mit klassischen Solvern generiert, die zu jeder Formel nur eine von vielen möglichen Lösungen liefern. Es wird gezeigt, dass es ausreichend ist, an diesen speziellen Lösungen zu trainieren, sodass das neuronale Netz zur Semantik der Logik generalisiert. Das neuronale Netz kann Lösungen sogar für Formeln aus Benchmarks aus der Literatur vorhersagen, bei denen der klassische Solver eine Zeitüberschreitung hatte. Zusätzlich wird gezeigt, dass das neuronale Netz einen erheblichen Teil der Probleme aus dem jährlichen Synthesewettbewerb (SYNTCOMP) und sogar Beispiele außerhalb der Distribution aus einer aktuellen Fallstudie lösen kann
    • …
    corecore