19 research outputs found

    Quantified Constraints in Twenty Seventeen

    Get PDF
    I present a survey of recent advances in the algorithmic and computational complexity theory of non-Boolean Quantified Constraint Satisfaction Problems, incorporating some more modern research directions

    QCSP on Reflexive Tournaments

    Get PDF

    QCSP on reflexive tournaments

    Get PDF
    We give a complexity dichotomy for the Quantified Constraint Satisfaction Problem QCSP(H) when H is a reflexive tournament. It is well known that reflexive tournaments can be split into a sequence of strongly connected components H1,…,Hn so that there exists an edge from every vertex of Hi to every vertex of Hj if and only if

    Dismantlability, connectedness, and mixing in relational structures

    Full text link
    The Constraint Satisfaction Problem (CSP) and its counting counterpart appears under different guises in many areas of mathematics, computer science, and elsewhere. Its structural and algorithmic properties have demonstrated to play a crucial role in many of those applications. For instance, in the decision CSPs, structural properties of the relational structures involved---like, for example, dismantlability---and their logical characterizations have been instrumental for determining the complexity and other properties of the problem. Topological properties of the solution set such as connectedness are related to the hardness of CSPs over random structures. Additionally, in approximate counting and statistical physics, where CSPs emerge in the form of spin systems, mixing properties and the uniqueness of Gibbs measures have been heavily exploited for approximating partition functions and free energy. In spite of the great diversity of those features, there are some eerie similarities between them. These were observed and made more precise in the case of graph homomorphisms by Brightwell and Winkler, who showed that dismantlability of the target graph, connectedness of the set of homomorphisms, and good mixing properties of the corresponding spin system are all equivalent. In this paper we go a step further and demonstrate similar connections for arbitrary CSPs. This requires much deeper understanding of dismantling and the structure of the solution space in the case of relational structures, and new refined concepts of mixing introduced by Brice\~no. In addition, we develop properties related to the study of valid extensions of a given partially defined homomorphism, an approach that turns out to be novel even in the graph case. We also add to the mix the combinatorial property of finite duality and its logic counterpart, FO-definability, studied by Larose, Loten, and Tardif.Comment: 27 pages, full version of the paper accepted to ICALP 201

    Effective lambda-models vs recursively enumerable lambda-theories

    Get PDF
    A longstanding open problem is whether there exists a non syntactical model of the untyped lambda-calculus whose theory is exactly the least lambda-theory (l-beta). In this paper we investigate the more general question of whether the equational/order theory of a model of the (untyped) lambda-calculus can be recursively enumerable (r.e. for brevity). We introduce a notion of effective model of lambda-calculus calculus, which covers in particular all the models individually introduced in the literature. We prove that the order theory of an effective model is never r.e.; from this it follows that its equational theory cannot be l-beta or l-beta-eta. We then show that no effective model living in the stable or strongly stable semantics has an r.e. equational theory. Concerning Scott's semantics, we investigate the class of graph models and prove that no order theory of a graph model can be r.e., and that there exists an effective graph model whose equational/order theory is minimum among all theories of graph models. Finally, we show that the class of graph models enjoys a kind of downwards Lowenheim-Skolem theorem.Comment: 34

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF
    corecore