27,667 research outputs found

    Lattice calculation of non-Gaussianity from preheating

    Full text link
    If light scalar fields are present at the end of inflation, their non-equilibrium dynamics such as parametric resonance or a phase transition can produce non-Gaussian density perturbations. We show how these perturbations can be calculated using non-linear lattice field theory simulations and the separate universe approximation. In the massless preheating model, we find that some parameter values are excluded while others lead to acceptable but observable levels of non-Gaussianity. This shows that preheating can be an important factor in assessing the viability of inflationary models.Comment: 4 pages, 1 figure; erratum adde

    SZE Observables, Pressure Profiles and Center Offsets in Magneticum Simulation Galaxy Clusters

    Full text link
    We present a detailed study of the galaxy cluster thermal \ac{sze} signal YY and pressure profiles using {\it Magneticum} Pathfinder hydrodynamical simulations. With a sample of 50,000 galaxy clusters (M500c>1.4×1014MM_{\rm 500c}>1.4\times10^{14} \rm M_{\odot}) out to z=2z=2, we find significant variations in the shape of the pressure profile with mass and redshift and present a new generalized NFW model that follows these trends. We show that the thermal pressure at R500cR_{\rm 500c} accounts for only 80~percent of the pressure required to maintain hydrostatic equilibrium, and therefore even idealized hydrostatic mass estimates would be biased at the 20~percent level. We compare the cluster \ac{sze} signal extracted from a sphere with different virial-like radii, a virial cylinder within a narrow redshift slice and the full light cone, confirming small scatter (σlnY0.087\sigma_{\ln Y}\simeq 0.087) in the sphere and showing that structure immediately surrounding clusters increases the scatter and strengthens non self-similar redshift evolution in the cylinder. Uncorrelated large scale structure along the line of sight leads to an increase in the \ac{sze} signal and scatter that is more pronounced for low mass clusters, resulting in non self-similar trends in both mass and redshift and a mass dependent scatter that is 0.16\sim0.16 at low masses. The scatter distribution is consistent with log-normal in all cases. We present a model of the offsets between the center of the gravitational potential and the \ac{sze} center that follows the variations with cluster mass and redshift.Comment: 20 pages, 15 figures, submitted to MNRA

    Cosmic Acceleration from Causal Backreaction with Recursive Nonlinearities

    Full text link
    We revisit the causal backreaction paradigm, in which the need for Dark Energy is eliminated via the generation of an apparent cosmic acceleration from the causal flow of inhomogeneity information coming in towards each observer from distant structure-forming regions. This second-generation formalism incorporates "recursive nonlinearities": the process by which already-established metric perturbations will then act to slow down all future flows of inhomogeneity information. Here, the long-range effects of causal backreaction are now damped, weakening its impact for models that were previously best-fit cosmologies. Nevertheless, we find that causal backreaction can be recovered as a replacement for Dark Energy via the adoption of larger values for the dimensionless `strength' of the clustering evolution functions being modeled -- a change justified by the hierarchical nature of clustering and virialization in the universe, occurring on multiple cosmic length scales simultaneously. With this, and with one new model parameter representing the slowdown of clustering due to astrophysical feedback processes, an alternative cosmic concordance can once again be achieved for a matter-only universe in which the apparent acceleration is generated entirely by causal backreaction effects. One drawback is a new degeneracy which broadens our predicted range for the observed jerk parameter j0Obsj_{0}^{\mathrm{Obs}}, thus removing what had appeared to be a clear signature for distinguishing causal backreaction from Cosmological Constant Λ\LambdaCDM. As for the long-term fate of the universe, incorporating recursive nonlinearities appears to make the possibility of an `eternal' acceleration due to causal backreaction far less likely; though this does not take into account gravitational nonlinearities or the large-scale breakdown of cosmological isotropy, effects not easily modeled within this formalism.Comment: 53 pages, 7 figures, 3 tables. This paper is an advancement of previous research on Causal Backreaction; the earlier work is available at arXiv:1109.4686 and arXiv:1109.515
    corecore