56,983 research outputs found

    Period Doubling Renormalization for Area-Preserving Maps and Mild Computer Assistance in Contraction Mapping Principle

    Full text link
    It has been observed that the famous Feigenbaum-Coullet-Tresser period doubling universality has a counterpart for area-preserving maps of {\fR}^2. A renormalization approach has been used in a "hard" computer-assisted proof of existence of an area-preserving map with orbits of all binary periods in Eckmann et al (1984). As it is the case with all non-trivial universality problems in non-dissipative systems in dimensions more than one, no analytic proof of this period doubling universality exists to date. In this paper we attempt to reduce computer assistance in the argument, and present a mild computer aided proof of the analyticity and compactness of the renormalization operator in a neighborhood of a renormalization fixed point: that is a proof that does not use generalizations of interval arithmetics to functional spaces - but rather relies on interval arithmetics on real numbers only to estimate otherwise explicit expressions. The proof relies on several instance of the Contraction Mapping Principle, which is, again, verified via mild computer assistance

    Verification for Timed Automata extended with Unbounded Discrete Data Structures

    Full text link
    We study decidability of verification problems for timed automata extended with unbounded discrete data structures. More detailed, we extend timed automata with a pushdown stack. In this way, we obtain a strong model that may for instance be used to model real-time programs with procedure calls. It is long known that the reachability problem for this model is decidable. The goal of this paper is to identify subclasses of timed pushdown automata for which the language inclusion problem and related problems are decidable

    A numerical study of infinitely renormalizable area-preserving maps

    Full text link
    It has been shown in (Gaidashev et al, 2010) and (Gaidashev et al, 2011) that infinitely renormalizable area-preserving maps admit invariant Cantor sets with a maximal Lyapunov exponent equal to zero. Furthermore, the dynamics on these Cantor sets for any two infinitely renormalizable maps is conjugated by a transformation that extends to a differentiable function whose derivative is Holder continuous of exponent alpha>0. In this paper we investigate numerically the specific value of alpha. We also present numerical evidence that the normalized derivative cocycle with the base dynamics in the Cantor set is ergodic. Finally, we compute renormalization eigenvalues to a high accuracy to support a conjecture that the renormalization spectrum is real
    • …
    corecore