144 research outputs found

    First-Order Definability of Trees and Sparse Random Graphs

    Get PDF
    This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Let D(G) be the smallest quantifier depth of a first-order formula which is true for a graph G but false for any other non-isomorphic graph. This can be viewed as a measure for the descriptive complexity of G in first-order logic. We show that almost surely , where G is a random tree of order n or the giant component of a random graph with constant c<1. These results rely on computing the maximum of D(T) for a tree T of order n and maximum degree l, so we study this problem as well.Peer Reviewe

    Transforming structures by set interpretations

    Get PDF
    We consider a new kind of interpretation over relational structures: finite sets interpretations. Those interpretations are defined by weak monadic second-order (WMSO) formulas with free set variables. They transform a given structure into a structure with a domain consisting of finite sets of elements of the orignal structure. The definition of these interpretations directly implies that they send structures with a decidable WMSO theory to structures with a decidable first-order theory. In this paper, we investigate the expressive power of such interpretations applied to infinite deterministic trees. The results can be used in the study of automatic and tree-automatic structures.Comment: 36 page

    Probabilities of first-order sentences on sparse random relational structures: An application to definability on random CNF formulas

    Get PDF
    We extend the convergence law for sparse random graphs proven by Lynch to arbitrary relational languages. We consider a finite relational vocabulary s and a first-order theory T for s composed of symmetry and anti-reflexivity axioms. We define a binomial random model of finite s-structures that satisfy T and show that first-order properties have well defined asymptotic probabilities when the expected number of tuples satisfying each relation in s is linear. It is also shown that these limit probabilities are well behaved with respect to several parameters that represent the density of tuples in each relation R in the vocabulary sÂż. An application of these results to the problem of random Boolean satisfiability is presented. We show that in a random k-CNF formula on n variables, where each possible clause occurs with probability ~c/nk-1Âż, independently any first-order property of k-CNF formulas that implies unsatisfiability does almost surely not hold as n tends to infinity.Peer ReviewedPostprint (published version

    Fixed-parameter tractability, definability, and model checking

    Full text link
    In this article, we study parameterized complexity theory from the perspective of logic, or more specifically, descriptive complexity theory. We propose to consider parameterized model-checking problems for various fragments of first-order logic as generic parameterized problems and show how this approach can be useful in studying both fixed-parameter tractability and intractability. For example, we establish the equivalence between the model-checking for existential first-order logic, the homomorphism problem for relational structures, and the substructure isomorphism problem. Our main tractability result shows that model-checking for first-order formulas is fixed-parameter tractable when restricted to a class of input structures with an excluded minor. On the intractability side, for every t >= 0 we prove an equivalence between model-checking for first-order formulas with t quantifier alternations and the parameterized halting problem for alternating Turing machines with t alternations. We discuss the close connection between this alternation hierarchy and Downey and Fellows' W-hierarchy. On a more abstract level, we consider two forms of definability, called Fagin definability and slicewise definability, that are appropriate for describing parameterized problems. We give a characterization of the class FPT of all fixed-parameter tractable problems in terms of slicewise definability in finite variable least fixed-point logic, which is reminiscent of the Immerman-Vardi Theorem characterizing the class PTIME in terms of definability in least fixed-point logic.Comment: To appear in SIAM Journal on Computin

    On Brambles, Grid-Like Minors, and Parameterized Intractability of Monadic Second-Order Logic

    Full text link
    Brambles were introduced as the dual notion to treewidth, one of the most central concepts of the graph minor theory of Robertson and Seymour. Recently, Grohe and Marx showed that there are graphs G, in which every bramble of order larger than the square root of the treewidth is of exponential size in |G|. On the positive side, they show the existence of polynomial-sized brambles of the order of the square root of the treewidth, up to log factors. We provide the first polynomial time algorithm to construct a bramble in general graphs and achieve this bound, up to log-factors. We use this algorithm to construct grid-like minors, a replacement structure for grid-minors recently introduced by Reed and Wood, in polynomial time. Using the grid-like minors, we introduce the notion of a perfect bramble and an algorithm to find one in polynomial time. Perfect brambles are brambles with a particularly simple structure and they also provide us with a subgraph that has bounded degree and still large treewidth; we use them to obtain a meta-theorem on deciding certain parameterized subgraph-closed problems on general graphs in time singly exponential in the parameter. The second part of our work deals with providing a lower bound to Courcelle's famous theorem, stating that every graph property that can be expressed by a sentence in monadic second-order logic (MSO), can be decided by a linear time algorithm on classes of graphs of bounded treewidth. Using our results from the first part of our work we establish a strong lower bound for tractability of MSO on classes of colored graphs

    Logarithmic Weisfeiler--Leman and Treewidth

    Full text link
    In this paper, we show that the (3k+4)(3k+4)-dimensional Weisfeiler--Leman algorithm can identify graphs of treewidth kk in O(log⁥n)O(\log n) rounds. This improves the result of Grohe & Verbitsky (ICALP 2006), who previously established the analogous result for (4k+3)(4k+3)-dimensional Weisfeiler--Leman. In light of the equivalence between Weisfeiler--Leman and the logic FO+C\textsf{FO} + \textsf{C} (Cai, F\"urer, & Immerman, Combinatorica 1992), we obtain an improvement in the descriptive complexity for graphs of treewidth kk. Precisely, if GG is a graph of treewidth kk, then there exists a (3k+5)(3k+5)-variable formula φ\varphi in FO+C\textsf{FO} + \textsf{C} with quantifier depth O(log⁥n)O(\log n) that identifies GG up to isomorphism
    • 

    corecore