395 research outputs found

    A quasiconvex asymptotic function with applications in optimization

    Get PDF
    We introduce a new asymptotic function, which is mainly adapted to quasiconvex functions. We establish several properties and calculus rules for this concept and compare it to previous notions of generalized asymptotic functions. Finally, we apply our new definition to quasiconvex optimization problems: we characterize the boundedness of the function, and the nonemptiness and compactness of the set of minimizers. We also provide a sufficient condition for the closedness of the image of a nonempty closed and convex set via a vector-valued function

    Quasiconvex Programming

    Full text link
    We define quasiconvex programming, a form of generalized linear programming in which one seeks the point minimizing the pointwise maximum of a collection of quasiconvex functions. We survey algorithms for solving quasiconvex programs either numerically or via generalizations of the dual simplex method from linear programming, and describe varied applications of this geometric optimization technique in meshing, scientific computation, information visualization, automated algorithm analysis, and robust statistics.Comment: 33 pages, 14 figure

    Zero-Convex Functions, Perturbation Resilience, and Subgradient Projections for Feasibility-Seeking Methods

    Full text link
    The convex feasibility problem (CFP) is at the core of the modeling of many problems in various areas of science. Subgradient projection methods are important tools for solving the CFP because they enable the use of subgradient calculations instead of orthogonal projections onto the individual sets of the problem. Working in a real Hilbert space, we show that the sequential subgradient projection method is perturbation resilient. By this we mean that under appropriate conditions the sequence generated by the method converges weakly, and sometimes also strongly, to a point in the intersection of the given subsets of the feasibility problem, despite certain perturbations which are allowed in each iterative step. Unlike previous works on solving the convex feasibility problem, the involved functions, which induce the feasibility problem's subsets, need not be convex. Instead, we allow them to belong to a wider and richer class of functions satisfying a weaker condition, that we call "zero-convexity". This class, which is introduced and discussed here, holds a promise to solve optimization problems in various areas, especially in non-smooth and non-convex optimization. The relevance of this study to approximate minimization and to the recent superiorization methodology for constrained optimization is explained.Comment: Mathematical Programming Series A, accepted for publicatio

    3D-2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization

    Get PDF
    A 3D-2D dimension reduction for a nonlinear optimal design problem with a perimeter penalization is performed in the realm of Γ\Gamma-convergence, providing an integral representation for the limit functional.Comment: to appear on Comptes Rendus Mathematiqu
    • …
    corecore