32,864 research outputs found

    Popularity versus Similarity in Growing Networks

    Full text link
    Popularity is attractive -- this is the formula underlying preferential attachment, a popular explanation for the emergence of scaling in growing networks. If new connections are made preferentially to more popular nodes, then the resulting distribution of the number of connections that nodes have follows power laws observed in many real networks. Preferential attachment has been directly validated for some real networks, including the Internet. Preferential attachment can also be a consequence of different underlying processes based on node fitness, ranking, optimization, random walks, or duplication. Here we show that popularity is just one dimension of attractiveness. Another dimension is similarity. We develop a framework where new connections, instead of preferring popular nodes, optimize certain trade-offs between popularity and similarity. The framework admits a geometric interpretation, in which popularity preference emerges from local optimization. As opposed to preferential attachment, the optimization framework accurately describes large-scale evolution of technological (Internet), social (web of trust), and biological (E.coli metabolic) networks, predicting the probability of new links in them with a remarkable precision. The developed framework can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon

    AS/A level subject criteria for mathematics: consultation draft: for first teaching from September 2012

    Get PDF

    From simple to complex networks: inherent structures, barriers and valleys in the context of spin glasses

    Full text link
    Given discrete degrees of freedom (spins) on a graph interacting via an energy function, what can be said about the energy local minima and associated inherent structures? Using the lid algorithm in the context of a spin glass energy function, we investigate the properties of the energy landscape for a variety of graph topologies. First, we find that the multiplicity Ns of the inherent structures generically has a lognormal distribution. In addition, the large volume limit of ln/ differs from unity, except for the Sherrington-Kirkpatrick model. Second, we find simple scaling laws for the growth of the height of the energy barrier between the two degenerate ground states and the size of the associated valleys. For finite connectivity models, changing the topology of the underlying graph does not modify qualitatively the energy landscape, but at the quantitative level the models can differ substantially.Comment: 10 pages, 9 figs, slightly improved presentation, more references, accepted for publication in Phys Rev
    corecore