204 research outputs found

    River Run Off Measurement With SAR Along Track Interferometry

    Get PDF
    The paper summarizes the need for global space borne river run-off measurements. It reports about an airborne SAR experiment aimed to measure the surface velocity of the river Isar in Bavaria / Germany. The results from two different SAR techniques, including Along Track Interferometry (ATI) show good correspondence. Finally suggestions for further studies are given

    Measurements of Sea Surface Currents in the Baltic Sea Region Using Spaceborne Along-Track InSAR

    Get PDF
    The main challenging problems in ocean current retrieval from along-track interferometric (ATI)-synthetic aperture radar (SAR) are phase calibration and wave bias removal. In this paper, a method based on differential InSAR (DInSAR) technique for correcting the phase offset and its variation is proposed. The wave bias removal is assessed using two different Doppler models and two different wind sources. In addition to the wind provided by an atmospheric model, the wind speed used for wave correction in this work is extracted from the calibrated SAR backscatter. This demonstrates that current retrieval from ATI-SAR can be completed independently of atmospheric models. The retrieved currents, from four TanDEM-X (TDX) acquisitions over the 6resund channel in the Baltic Sea, are compared to a regional ocean circulation model. It is shown that by applying the proposed phase correction and wave bias removal, a good agreement in spatial variation and current direction is achieved. The residual bias, between the ocean model and the current retrievals, varies between 0.013 and 0.3 m/s depending on the Doppler model and wind source used for wave correction. This paper shows that using SAR as a source of wind speed reduces the bias and root-mean-squared-error (RMSE) of the retrieved currents by 20% and 15%, respectively. Finally, the sensitivity of the sea current retrieval to Doppler model and wind errors are discussed

    Retrieval of Ocean Surface Currents and Winds Using Satellite SAR backscatter and Doppler frequency shift

    Get PDF
    Ocean surface winds and currents play an important role for weather, climate, marine life, ship navigation, oil spill drift and search and rescue. In-situ observations of the ocean are sparse and costly. Satellites provide a useful complement to these observations. Synthetic aperture radar (SAR) is particularly attractive due to its high spatial resolution and its capability to extract both sea surface winds and currents day and night and almost independent of weather.The work in this thesis involves processing of along-track interferometric SAR (ATI-SAR) data, analysis of the backscatter and Doppler frequency shift, and development of wind and current retrieval algorithms. Analysis of the Doppler frequency shift showed a systematic bias. A calibration method was proposed and implemented to correct for this bias. Doppler analysis also showed that the wave contribution to the SAR Doppler centroid often dominates over the current contribution. This wave contribution is estimated using existing theoretical and empirical Doppler models. For wind and current retrieval, two methods were developed and implemented.The first method, called the direct method, consists of retrieval of the wind speed from SAR backscatter using an empirical backscatter model. In order to retrieve the radial current, the retrieved wind speed is used to correct for the wave contribution. The current retrieval was assessed using two different (theoretical and empirical) Doppler models and wind inputs (model and SAR-derived). It was found that the results obtained by combining the Doppler empirical model with the SAR-derived wind speed were more consistent with ocean models.The second method, called Bayesian method, consists of blending the SAR observables (backscatter and Doppler shift) with an atmospheric and an oceanic model to retrieve the total wind and current vector fields. It was shown that this method yields more accurate estimates, i.e. reduces the models biases against in-situ measurements. Moreover, the method introduces small scale features, e.g. fronts and meandering, which are weakly resolved by the models.The correlation between the surface wind vectors and the SAR Doppler shift was demonstrated empirically using the Doppler shift estimated from over 300 TanDEM-X interferograms and ECMWF reanalysis wind vectors. Analysis of polarimetric data showed that theoretical models such as Bragg and composite surface models over-estimate the backscatter polarization ratio and Doppler shift polarization difference. A combination of a theoretical Doppler model and an empirical modulation transfer function was proposed. It was found that this model is more consistent with the analyzed data than the pure theoretical models.The results of this thesis will be useful for integrating SAR retrievals in ocean current products and assimilating SAR observables in the atmospheric, oceanic or coupled models. The results are also relevant for preparation studies of future satellite missions

    First Results Of TanDEM-X Along-Track Interferometry

    Get PDF
    The interferometric imaging modes of the TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurements) satellite formation offer improved along-track interferometric capabilities e.g. through longer and multiple baselines. While the first provide high sensitivities to ground motions, the latter enable to resolve ambiguities. The extraction of motion information from TanDEM-X data by means of ATI is challenging due to the hybrid nature of the interferometric baseline. This is generally composed of an across-track (XTI) and an along-track interferometric (ATI) component BATI and requires a separation of the respective interferometric phase contributions

    Investigation of Sea Ice Using Multiple Synthetic Aperture Radar Acquisitions

    Get PDF
    The papers of this thesis are not available in Munin. Paper I: Yitayew, T. G., Ferro-Famil, L., Eltoft, T. & Tebaldini, S. (2017). Tomographic imaging of fjord ice using a very high resolution ground-based SAR system. Available in IEEE Transactions on Geoscience and Remote Sensing, 55 (2):698-714. Paper II: Yitayew, T. G., Ferro-Famil, L., Eltoft, T. & Tebaldini, S. (2017). Lake and fjord ice imaging using a multifrequency ground-based tomographic SAR system. Available in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(10):4457-4468. Paper III: Yitayew, T. G., Divine, D. V., Dierking, W., Eltoft, T., Ferro-Famil, L., Rosel, A. & Negrel, J. Validation of Sea ice Topographic Heights Derived from TanDEMX Interferometric SAR Data with Results from Laser Profiler and Photogrammetry. (Manuscript).The thesis investigates imaging in the vertical direction of different types of ice in the arctic using synthetic aperture radar (SAR) tomography and SAR interferometry. In the first part, the magnitude and the positions of the dominant scattering contributions within snow covered fjord and lake ice layers are effectively identified by using a very high resolution ground-based tomographic SAR system. Datasets collected at multiple frequencies and polarizations over two test sites in Tromsø area, northern Norway, are used for characterizing the three-dimensional response of snow and ice. The presented experimental results helped to improve our understanding of the interaction between radar waves and snow and ice layers. The reconstructed radar responses are also used for estimating the refractive indices and the vertical positions of the different sub-layers of snow and ice. The second part of the thesis deals with the retrieval of the surface topography of multi-year sea ice using SAR interferometry. Satellite acquisitions from TanDEM-X over the Svalbard area are used for analysis. The retrieved surface height is validated by using overlapping helicopter-based stereo camera and laser profiler measurements, and a very good agreement has been found. The work contributes to an improved understanding regarding the potential of SAR tomography for imaging the vertical scattering distribution of snow and ice layers, and for studying the influence of both sensor parameters such as its frequency and polarization and scene properties such as layer stratification, air bubbles and small-scale roughness of the interfaces on snow and ice backscattered signal. Moreover, the presented results reveal the potential of SAR interferometry for retrieving the surface topography of sea ice

    Monitoring and predicting railway subsidence using InSAR and time series prediction techniques

    Get PDF
    Improvements in railway capabilities have resulted in heavier axle loads and higher speed operations, which increase the dynamic loads on the track. As a result, railway subsidence has become a threat to good railway performance and safe railway operation. The author of this thesis provides an approach for railway performance assessment through the monitoring and prediction of railway subsidence. The InSAR technique, which is able to monitor railway subsidence over a large area and long time period, was selected for railway subsidence monitoring. Future trends of railway subsidence should also be predicted using subsidence prediction models based on the time series deformation records obtained by InSAR. Three time series prediction models, which are the ARMA model, a neural network model and the grey model, are adopted in this thesis. Two case studies which monitor and predict the subsidence of the HS1 route were carried out to assess the performance of HS1. The case studies demonstrate that except for some areas with potential subsidence, no large scale subsidence has occurred on HS1 and the line is still stable after its 10 years' operation. In addition, the neural network model has the best performance in predicting the subsidence of HS1

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    A Variational Stereo Method for the Three-Dimensional Reconstruction of Ocean Waves

    Get PDF
    We develop a novel remote sensing technique for the observation of waves on the ocean surface. Our method infers the 3-D waveform and radiance of oceanic sea states via a variational stereo imagery formulation. In this setting, the shape and radiance of the wave surface are given by minimizers of a composite energy functional that combines a photometric matching term along with regularization terms involving the smoothness of the unknowns. The desired ocean surface shape and radiance are the solution of a system of coupled partial differential equations derived from the optimality conditions of the energy functional. The proposed method is naturally extended to study the spatiotemporal dynamics of ocean waves and applied to three sets of stereo video data. Statistical and spectral analysis are carried out. Our results provide evidence that the observed omnidirectional wavenumber spectrum S(k) decays as k-2.5 is in agreement with Zakharov's theory (1999). Furthermore, the 3-D spectrum of the reconstructed wave surface is exploited to estimate wave dispersion and currents
    corecore