13,981 research outputs found

    Crack-Like Processes Governing the Onset of Frictional Slip

    Full text link
    We perform real-time measurements of the net contact area between two blocks of like material at the onset of frictional slip. We show that the process of interface detachment, which immediately precedes the inception of frictional sliding, is governed by three different types of detachment fronts. These crack-like detachment fronts differ by both their propagation velocities and by the amount of net contact surface reduction caused by their passage. The most rapid fronts propagate at intersonic velocities but generate a negligible reduction in contact area across the interface. Sub-Rayleigh fronts are crack-like modes which propagate at velocities up to the Rayleigh wave speed, VR, and give rise to an approximate 10% reduction in net contact area. The most efficient contact area reduction (~20%) is precipitated by the passage of slow detachment fronts. These fronts propagate at anomalously slow velocities, which are over an order of magnitude lower than VR yet orders of magnitude higher than other characteristic velocity scales such as either slip or loading velocities. Slow fronts are generated, in conjunction with intersonic fronts, by the sudden arrest of sub-Rayleigh fronts. No overall sliding of the interface occurs until either of the slower two fronts traverses the entire interface, and motion at the leading edge of the interface is initiated. Slip at the trailing edge of the interface accompanies the motion of both the slow and sub-Rayleigh fronts. We might expect these modes to be important in both fault nucleation and earthquake dynamics.Comment: 19 page, 5 figures, to appear in International Journal of Fractur

    Evaluating the Roles of Rainout and Post-Condensation Processes in a Landfalling Atmospheric River with Stable Isotopes in Precipitation and Water Vapor

    Get PDF
    Atmospheric rivers (ARs), and frontal systems more broadly, tend to exhibit prominent “V” shapes in time series of stable isotopes in precipitation. Despite the magnitude and widespread nature of these “V” shapes, debate persists as to whether these shifts are driven by changes in the degree of rainout, which we determine using the Rayleigh distillation of stable isotopes, or by post-condensation processes such as below-cloud evaporation and equilibrium isotope exchange between hydrometeors and surrounding vapor. Here, we present paired precipitation and water vapor isotope time series records from the 5–7 March 2016, AR in Bodega Bay, CA. The stable isotope composition of surface vapor along with independent meteorological constraints such as temperature and relative humidity reveal that rainout and post-condensation processes dominate during different portions of the event. We find that Rayleigh distillation controls during peak AR conditions (with peak rainout of 55%) while post-condensation processes have their greatest effect during periods of decreased precipitation on the margins of the event. These results and analyses inform critical questions regarding the temporal evolution of AR events and the physical processes that control them at local scales

    First-passage and first-exit times of a Bessel-like stochastic process

    Get PDF
    We study a stochastic process XtX_t related to the Bessel and the Rayleigh processes, with various applications in physics, chemistry, biology, economics, finance and other fields. The stochastic differential equation is dXt=(nD/Xt)dt+2DdWtdX_t = (nD/X_t) dt + \sqrt{2D} dW_t, where WtW_t is the Wiener process. Due to the singularity of the drift term for Xt=0X_t = 0, different natures of boundary at the origin arise depending on the real parameter nn: entrance, exit, and regular. For each of them we calculate analytically and numerically the probability density functions of first-passage times or first-exit times. Nontrivial behaviour is observed in the case of a regular boundary.Comment: 15 pages, 6 figures, submitted to Physical Review

    Some Current Advances in Cavitation Research

    Get PDF
    Several recent experimental and analytical investigations of cavitating flows have revealed new phenomena which clearly affect how we should view cavitation growth and collapse and the strategies used to ameliorate its adverse effects. On the scale of individual bubbles it is now clear that the dynamics and acoustics of single bubbles are severely affected by the distortion of the bubble by the flow. This distortion depends on the typical dimension and velocity of the flow (as well as the Reynolds number) and therefore the distortion effects are very important in the process of scaling results up from the model to the prototype. The first part of the lecture will discuss the implications of these new observations for the classic problem of scale-up. Another recent revelation is the importance of the interactions between bubbles in determining the coherent motions, dynamic and acoustic, of a cloud of cavitation bubbles. The second part of the lecture focusses on these cloud cavitation effects. It is shown that the collapse of a cloud of cavitating bubbles involves the formation of a bubbly shock wave and it is suggested that the focussing of these shock waves is responsible for the enhanced noise and damage in cloud cavitation. The paper describes experiments and calculations conducted to investigate these phenomena in greater detail as part of an attempt to find ways of ameliorating the most destructive effects associated with cloud cavitation

    Radiative Shock-Induced Collapse of Intergalactic Clouds

    Full text link
    Accumulating observational evidence for a number of radio galaxies suggests an association between their jets and regions of active star formation. The standard picture is that shocks generated by the jet propagate through an inhomogeneous medium and trigger the collapse of overdense clouds, which then become active star-forming regions. In this contribution, we report on recent hydrodynamic simulations of radiative shock-cloud interactions using two different cooling models: an equilibrium cooling-curve model assuming solar metallicities and a non-equilibrium chemistry model appropriate for primordial gas clouds. We consider a range of initial cloud densities and shock speeds in order to quantify the role of cooling in the evolution. Our results indicate that for moderate cloud densities (>1 cm^{-3}) and shock Mach numbers (<20), cooling processes can be highly efficient and result in more than 50% of the initial cloud mass cooling to below 100 K. We also use our results to estimate the final H_2 mass fraction for the simulations that use the non-equilibrium chemistry package. This is an important measurement, since H_2 is the dominant coolant for a primordial gas cloud. We find peak H_2 mass fractions of >0.01 and total H_2 mass fractions of >10^{-5} for the cloud gas. Finally, we compare our results with the observations of jet-induced star formation in ``Minkowski's Object.'' We conclude that its morphology, star formation rate (~ 0.3M_solar/yr) and stellar mass (~ 1.2 x 10^7 M_solar) can be explained by the interaction of a 90,000 km/s jet with an ensemble of moderately dense (~ 10 cm^{-3}), warm (10^4 K) intergalactic clouds in the vicinity of its associated radio galaxy at the center of the galaxy cluster.Comment: 30 pages, 7 figures, submitted to Astrophysical Journa
    corecore