1,264 research outputs found

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Security in Pervasive Computing: Current Status and Open Issues

    Get PDF
    Million of wireless device users are ever on the move, becoming more dependent on their PDAs, smart phones, and other handheld devices. With the advancement of pervasive computing, new and unique capabilities are available to aid mobile societies. The wireless nature of these devices has fostered a new era of mobility. Thousands of pervasive devices are able to arbitrarily join and leave a network, creating a nomadic environment known as a pervasive ad hoc network. However, mobile devices have vulnerabilities, and some are proving to be challenging. Security in pervasive computing is the most critical challenge. Security is needed to ensure exact and accurate confidentiality, integrity, authentication, and access control, to name a few. Security for mobile devices, though still in its infancy, has drawn the attention of various researchers. As pervasive devices become incorporated in our day-to-day lives, security will increasingly becoming a common concern for all users - - though for most it will be an afterthought, like many other computing functions. The usability and expansion of pervasive computing applications depends greatly on the security and reliability provided by the applications. At this critical juncture, security research is growing. This paper examines the recent trends and forward thinking investigation in several fields of security, along with a brief history of previous accomplishments in the corresponding areas. Some open issues have been discussed for further investigation

    Voting: What Has Changed, What Hasn't, & Why: Research Bibliography

    Get PDF
    Since the origins of the Caltech/MIT Voting Technology Project in the fall of 2000, there has been an explosion of research and analysis on election administration and voting technology. As we worked throughout 2012 on our most recent study, Voting: What Has Changed, What Hasn’t, & What Needs Improvement, we found many more research studies. In this research bibliography, we present the research literature that we have found; future revisions of this research bibliography will update this list.Carnegie Corporation of New Yor

    Electronic payment systems

    Full text link

    Emoji Company GmbH v Schedule A Defendants

    Get PDF
    Declaration of Dean Eric Goldma

    Emoji Company GmbH v Schedule A Defendants

    Get PDF
    Declaration of Dean Eric Goldma

    Market-based Recommendation: Agents that Compete for Consumer Attention

    No full text
    The amount of attention space available for recommending suppliers to consumers on e-commerce sites is typically limited. We present a competitive distributed recommendation mechanism based on adaptive software agents for efficiently allocating the 'consumer attention space', or banners. In the example of an electronic shopping mall, the task is delegated to the individual shops, each of which evaluates the information that is available about the consumer and his or her interests (e.g. keywords, product queries, and available parts of a profile). Shops make a monetary bid in an auction where a limited amount of 'consumer attention space' for the arriving consumer is sold. Each shop is represented by a software agent that bids for each consumer. This allows shops to rapidly adapt their bidding strategy to focus on consumers interested in their offerings. For various basic and simple models for on-line consumers, shops, and profiles, we demonstrate the feasibility of our system by evolutionary simulations as in the field of agent-based computational economics (ACE). We also develop adaptive software agents that learn bidding strategies, based on neural networks and strategy exploration heuristics. Furthermore, we address the commercial and technological advantages of this distributed market-based approach. The mechanism we describe is not limited to the example of the electronic shopping mall, but can easily be extended to other domains
    corecore