65 research outputs found

    First order-rewritability and containment of conjunctive queries in horn description logics

    Get PDF
    International audienceWe study FO-rewritability of conjunctive queries in the presence of ontologies formulated in a description logic between EL and Horn-SHIF, along with related query containment problems. Apart from providing characterizations, we establish complexity results ranging from EXPTIME via NEXPTIME to 2EXPTIME, pointing out several interesting effects. In particular, FO-rewriting is more complex for conjunctive queries than for atomic queries when inverse roles are present, but not otherwise

    Computing FO-Rewritings in EL in Practice: from Atomic to Conjunctive Queries

    Full text link
    A prominent approach to implementing ontology-mediated queries (OMQs) is to rewrite into a first-order query, which is then executed using a conventional SQL database system. We consider the case where the ontology is formulated in the description logic EL and the actual query is a conjunctive query and show that rewritings of such OMQs can be efficiently computed in practice, in a sound and complete way. Our approach combines a reduction with a decomposed backwards chaining algorithm for OMQs that are based on the simpler atomic queries, also illuminating the relationship between first-order rewritings of OMQs based on conjunctive and on atomic queries. Experiments with real-world ontologies show promising results

    Rewritability in Monadic Disjunctive Datalog, MMSNP, and Expressive Description Logics

    Get PDF
    We study rewritability of monadic disjunctive Datalog programs, (the complements of) MMSNP sentences, and ontology-mediated queries (OMQs) based on expressive description logics of the ALC family and on conjunctive queries. We show that rewritability into FO and into monadic Datalog (MDLog) are decidable, and that rewritability into Datalog is decidable when the original query satisfies a certain condition related to equality. We establish 2NExpTime-completeness for all studied problems except rewritability into MDLog for which there remains a gap between 2NExpTime and 3ExpTime. We also analyze the shape of rewritings, which in the MMSNP case correspond to obstructions, and give a new construction of canonical Datalog programs that is more elementary than existing ones and also applies to formulas with free variables

    Ontology-based data access with databases: a short course

    Get PDF
    Ontology-based data access (OBDA) is regarded as a key ingredient of the new generation of information systems. In the OBDA paradigm, an ontology defines a high-level global schema of (already existing) data sources and provides a vocabulary for user queries. An OBDA system rewrites such queries and ontologies into the vocabulary of the data sources and then delegates the actual query evaluation to a suitable query answering system such as a relational database management system or a datalog engine. In this chapter, we mainly focus on OBDA with the ontology language OWL 2QL, one of the three profiles of the W3C standard Web Ontology Language OWL 2, and relational databases, although other possible languages will also be discussed. We consider different types of conjunctive query rewriting and their succinctness, different architectures of OBDA systems, and give an overview of the OBDA system Ontop

    Guarded Ontology-Mediated Queries

    Get PDF

    Query rewriting under linear EL knowledge bases

    Get PDF
    With the adoption of the recent SPARQL 1.1 standard, RDF databases are capable of directly answering more expressive queries than simple conjunctive queries. In this paper we exploit such capabilities to answer conjunctive queries (CQs) under ontologies expressed in the description logic called linear EL-lin, a restricted form of EL. In particular, we show a query answering algorithm that rewrites a given CQ into a conjunctive regular path query (CRPQ) which, evaluated on the given instance, returns the correct answer. Our technique is based on the representation of infinite unions of CQs by non-deterministic finite-state automata. Our results achieve optimal data complexity, as well as producing rewritings straightforwardly implementable in SPARQL 1.1

    THE DATA COMPLEXITY OF DESCRIPTION LOGIC ONTOLOGIES

    Get PDF
    We analyze the data complexity of ontology-mediated querying where the ontologies are formulated in a description logic (DL) of the ALC family and queries are conjunctive queries, positive existential queries, or acyclic conjunctive queries. Our approach is non-uniform in the sense that we aim to understand the complexity of each single ontology instead of for all ontologies formulated in a certain language. While doing so, we quantify over the queries and are interested, for example, in the question whether all queries can be evaluated in polynomial time w.r.t. a given ontology. Our results include a PTime/coNP-dichotomy for ontologies of depth one in the description logic ALCFI, the same dichotomy for ALC- and ALCI-ontologies of unrestricted depth, and the non-existence of such a dichotomy for ALCF-ontologies. For the latter DL, we additionally show that it is undecidable whether a given ontology admits PTime query evaluation. We also consider the connection between PTime query evaluation and rewritability into (monadic) Datalog
    corecore