49,436 research outputs found

    Animation of Hand-drawn Faces using Machine Learning

    Get PDF
    Today's research in artificial vision has brought us new and exciting possibilities for the production and analysis of multimedia content. Pose estimation is an artificial vision technology that detects and identifies a human body's position and orientation within a picture or video. It locates key points on the bodies, and uses them to create three-dimensional models. In digital animation, pose estimation has paved the way for new visual effects and 3D renderings. By detecting human movements, it is now possible to create fluid realistic animations from still images. This bachelor thesis discusses the development of a pose estimation based program that is able to animate hand-drawn faces -- in particular the caricatured faces in Papiri di Laurea -- using machine learning and image manipulation. Working off of existing techniques for motion capture and 3D animation and making use of existing computer vision libraries like \textit{OpenCV} or \textit{dlib}, the project gave a satisfying result in the form of a short video of a hand-drawn caricatured figure that assumes the facial expressions fed to the program through an input video. The \textit{First Order Motion Model} was used to create this facial animation. It is a model based on the idea of transferring the movement detected from a source video to an image. %This model works best on close-ups of faces; the larger the background, the more the image gets distorted in the background. Possible future developments could include the creation of a website: the user loads their drawing and a video of themselves to get a gif version of their papiro. This could make for a new feature to add to portraits and caricatures, and more specifically to this thesis, a new way to celebrate graduates in Padova.Today's research in artificial vision has brought us new and exciting possibilities for the production and analysis of multimedia content. Pose estimation is an artificial vision technology that detects and identifies a human body's position and orientation within a picture or video. It locates key points on the bodies, and uses them to create three-dimensional models. In digital animation, pose estimation has paved the way for new visual effects and 3D renderings. By detecting human movements, it is now possible to create fluid realistic animations from still images. This bachelor thesis discusses the development of a pose estimation based program that is able to animate hand-drawn faces -- in particular the caricatured faces in Papiri di Laurea -- using machine learning and image manipulation. Working off of existing techniques for motion capture and 3D animation and making use of existing computer vision libraries like \textit{OpenCV} or \textit{dlib}, the project gave a satisfying result in the form of a short video of a hand-drawn caricatured figure that assumes the facial expressions fed to the program through an input video. The \textit{First Order Motion Model} was used to create this facial animation. It is a model based on the idea of transferring the movement detected from a source video to an image. %This model works best on close-ups of faces; the larger the background, the more the image gets distorted in the background. Possible future developments could include the creation of a website: the user loads their drawing and a video of themselves to get a gif version of their papiro. This could make for a new feature to add to portraits and caricatures, and more specifically to this thesis, a new way to celebrate graduates in Padova

    Visual Importance-Biased Image Synthesis Animation

    Get PDF
    Present ray tracing algorithms are computationally intensive, requiring hours of computing time for complex scenes. Our previous work has dealt with the development of an overall approach to the application of visual attention to progressive and adaptive ray-tracing techniques. The approach facilitates large computational savings by modulating the supersampling rates in an image by the visual importance of the region being rendered. This paper extends the approach by incorporating temporal changes into the models and techniques developed, as it is expected that further efficiency savings can be reaped for animated scenes. Applications for this approach include entertainment, visualisation and simulation

    Improving Facial Analysis and Performance Driven Animation through Disentangling Identity and Expression

    Full text link
    We present techniques for improving performance driven facial animation, emotion recognition, and facial key-point or landmark prediction using learned identity invariant representations. Established approaches to these problems can work well if sufficient examples and labels for a particular identity are available and factors of variation are highly controlled. However, labeled examples of facial expressions, emotions and key-points for new individuals are difficult and costly to obtain. In this paper we improve the ability of techniques to generalize to new and unseen individuals by explicitly modeling previously seen variations related to identity and expression. We use a weakly-supervised approach in which identity labels are used to learn the different factors of variation linked to identity separately from factors related to expression. We show how probabilistic modeling of these sources of variation allows one to learn identity-invariant representations for expressions which can then be used to identity-normalize various procedures for facial expression analysis and animation control. We also show how to extend the widely used techniques of active appearance models and constrained local models through replacing the underlying point distribution models which are typically constructed using principal component analysis with identity-expression factorized representations. We present a wide variety of experiments in which we consistently improve performance on emotion recognition, markerless performance-driven facial animation and facial key-point tracking.Comment: to appear in Image and Vision Computing Journal (IMAVIS

    Pedestrian Flow Simulation Validation and Verification Techniques

    Get PDF
    For the verification and validation of microscopic simulation models of pedestrian flow, we have performed experiments for different kind of facilities and sites where most conflicts and congestion happens e.g. corridors, narrow passages, and crosswalks. The validity of the model should compare the experimental conditions and simulation results with video recording carried out in the same condition like in real life e.g. pedestrian flux and density distributions. The strategy in this technique is to achieve a certain amount of accuracy required in the simulation model. This method is good at detecting the critical points in the pedestrians walking areas. For the calibration of suitable models we use the results obtained from analyzing the video recordings in Hajj 2009 and these results can be used to check the design sections of pedestrian facilities and exits. As practical examples, we present the simulation of pilgrim streams on the Jamarat bridge. The objectives of this study are twofold: first, to show through verification and validation that simulation tools can be used to reproduce realistic scenarios, and second, gather data for accurate predictions for designers and decision makers.Comment: 19 pages, 10 figure

    A Mimetic Strategy to Engage Voluntary Physical Activity In Interactive Entertainment

    Full text link
    We describe the design and implementation of a vision based interactive entertainment system that makes use of both involuntary and voluntary control paradigms. Unintentional input to the system from a potential viewer is used to drive attention-getting output and encourage the transition to voluntary interactive behaviour. The iMime system consists of a character animation engine based on the interaction metaphor of a mime performer that simulates non-verbal communication strategies, without spoken dialogue, to capture and hold the attention of a viewer. The system was developed in the context of a project studying care of dementia sufferers. Care for a dementia sufferer can place unreasonable demands on the time and attentional resources of their caregivers or family members. Our study contributes to the eventual development of a system aimed at providing relief to dementia caregivers, while at the same time serving as a source of pleasant interactive entertainment for viewers. The work reported here is also aimed at a more general study of the design of interactive entertainment systems involving a mixture of voluntary and involuntary control.Comment: 6 pages, 7 figures, ECAG08 worksho
    • …
    corecore