92,641 research outputs found

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Some Theorems for Feed Forward Neural Networks

    Full text link
    In this paper we introduce a new method which employs the concept of "Orientation Vectors" to train a feed forward neural network and suitable for problems where large dimensions are involved and the clusters are characteristically sparse. The new method is not NP hard as the problem size increases. We `derive' the method by starting from Kolmogrov's method and then relax some of the stringent conditions. We show for most classification problems three layers are sufficient and the network size depends on the number of clusters. We prove as the number of clusters increase from N to N+dN the number of processing elements in the first layer only increases by d(logN), and are proportional to the number of classes, and the method is not NP hard. Many examples are solved to demonstrate that the method of Orientation Vectors requires much less computational effort than Radial Basis Function methods and other techniques wherein distance computations are required, in fact the present method increases logarithmically with problem size compared to the Radial Basis Function method and the other methods which depend on distance computations e.g statistical methods where probabilistic distances are calculated. A practical method of applying the concept of Occum's razor to choose between two architectures which solve the same classification problem has been described. The ramifications of the above findings on the field of Deep Learning have also been briefly investigated and we have found that it directly leads to the existence of certain types of NN architectures which can be used as a "mapping engine", which has the property of "invertibility", thus improving the prospect of their deployment for solving problems involving Deep Learning and hierarchical classification. The latter possibility has a lot of future scope in the areas of machine learning and cloud computing.Comment: 15 pages 13 figure

    Unifying an Introduction to Artificial Intelligence Course through Machine Learning Laboratory Experiences

    Full text link
    This paper presents work on a collaborative project funded by the National Science Foundation that incorporates machine learning as a unifying theme to teach fundamental concepts typically covered in the introductory Artificial Intelligence courses. The project involves the development of an adaptable framework for the presentation of core AI topics. This is accomplished through the development, implementation, and testing of a suite of adaptable, hands-on laboratory projects that can be closely integrated into the AI course. Through the design and implementation of learning systems that enhance commonly-deployed applications, our model acknowledges that intelligent systems are best taught through their application to challenging problems. The goals of the project are to (1) enhance the student learning experience in the AI course, (2) increase student interest and motivation to learn AI by providing a framework for the presentation of the major AI topics that emphasizes the strong connection between AI and computer science and engineering, and (3) highlight the bridge that machine learning provides between AI technology and modern software engineering

    Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis

    Get PDF
    In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent "imitate" teachers in diagnosing students' characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further used to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers' knowledge: when teachers' reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers' reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of student's learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments

    Quantum Applications In Political Science

    Get PDF
    Undergraduate Research ScholarshipThis paper will show the current state of quantum computation and its application as a political science research method. It will look at contemporary empirical literature to assess the current state of the method in both political science and computer science. Then, by assessing the state of quantum computation, this paper will make predictions concerning quantum computation as a research tool and also assess its capability as a catalyst for international diplomacy and discourse. Quantum computation is an emerging technology with increasing scientific attention. This paper will use IBM’s quantum computer, accessed through the cloud, to model and execute quantum algorithms that show the utility for political science research. Furthermore, through the base mathematics of common quantum algorithms, this paper will show how these algorithms can be expanded. This paper finds that quantum computation is a valuable tool with remarkable potential. However, quantum computing has its limitations and currently resides in an important juncture that will decide whether technology involving it will be resigned as a niche theoretical tool or be continued to be developed into a mainstream technology.No embargoAcademic Major: World Politic
    • …
    corecore