3 research outputs found

    Confluence of Conditional Term Rewrite Systems via Transformations

    Get PDF
    Conditional term rewriting is an intuitive yet complex extension of term rewriting. In order to benefit from the simpler framework of unconditional rewriting, transformations have been defined to eliminate the conditions of conditional term rewrite systems. Recent results provide confluence criteria for conditional term rewrite systems via transformations, yet they are restricted to CTRSs with certain syntactic properties like weak left-linearity. These syntactic properties imply that the transformations are sound for the given CTRS. This paper shows how to use transformations to prove confluence of operationally terminating, right-stable deterministic conditional term rewrite systems without the necessity of soundness restrictions. For this purpose, it is shown that certain rewrite strategies, in particular almost U-eagerness and innermost rewriting, always imply soundness

    On Reasonable Space and Time Cost Models for the λ-Calculus

    Get PDF
    Slot and van Emde Boas Invariance Thesis states that a time (respectively, space) cost model is reasonable for a computational model C if there are mutual simulations between Turing machines and C such that the overhead is polynomial in time (respectively, linear in space). The rationale is that under the Invariance Thesis, complexity classes such as LOGSPACE, P, PSPACE, become robust, i.e. machine independent. In this dissertation, we want to find out if it possible to define a reasonable space cost model for the lambda-calculus, the paradigmatic model for functional programming languages. We start by considering an unusual evaluation mechanism for the lambda-calculus, based on Girard's Geometry of Interaction, that was conjectured to be the key ingredient to obtain a space reasonable cost model. By a fine complexity analysis of this schema, based on new variants of non-idempotent intersection types, we disprove this conjecture. Then, we change the target of our analysis. We consider a variant over Krivine's abstract machine, a standard evaluation mechanism for the call-by-name lambda-calculus, optimized for space complexity, and implemented without any pointer. A fine analysis of the execution of (a refined version of) the encoding of Turing machines into the lambda-calculus allows us to conclude that the space consumed by this machine is indeed a reasonable space cost model. In particular, for the first time we are able to measure also sub-linear space complexities. Moreover, we transfer this result to the call-by-value case. Finally, we provide also an intersection type system that characterizes compositionally this new reasonable space measure. This is done through a minimal, yet non trivial, modification of the original de Carvalho type system

    Transparent synchronous dataflow: a functional paradigm for systems modelling and optimisation

    Get PDF
    System modelling is the use of mathematical formalisms to model real world systems for the purpose of analysis, simulation and prediction. One of the most common ways to model a system is to create the dataflow among its various components. There are two main approaches on how dataflow graphs are constructed in these system modelling frameworks: ‘define-and-run’ vs ‘define-by-run’. The former approach first creates a dataflow graph and then executes it by pushing data into it. The latter however constructs the graph while computing with data on-the-fly. ‘Define-and-run’ is usually more efficient because many graph optimisations can be applied; ‘Define-by-run’ however handles dynamic models better. This thesis aims to develop a new functional paradigm for systems modelling and optimisation that exhibits properties of both approaches where dataflow graphs are dynamic but efficient. We propose a new functional language, namely transparent synchronous dataflow (TSD), where dataflow graphs are constructed transparently with imperative commands to manipulate them explicitly; together with a synchronous mode of change propagation. The semantics of the language is designed on top of an unconventional graph abstract machine, Dynamic Geometry of Interaction Machine (DGoIM), which is natural for manipulating dataflow graphs. By using this semantics, the language is proved to be sound and efficient. Several experimental implementations were also created, including a native compiler for DGoIM and OCaml implementations for TSD
    corecore