2,729 research outputs found

    Model-based specification of safety compliance needs for critical systems : A holistic generic metamodel

    Get PDF
    Abstract Context: Many critical systems must comply with safety standards as a way of providing assurance that they do not pose undue risks to people, property, or the environment. Safety compliance is a very demanding activity, as the standards can consist of hundreds of pages and practitioners typically have to show the fulfilment of thousands of safety-related criteria. Furthermore, the text of the standards can be ambiguous, inconsistent, and hard to understand, making it difficult to determine how to effectively structure and manage safety compliance information. These issues become even more challenging when a system is intended to be reused in another application domain with different applicable standards. Objective: This paper aims to resolve these issues by providing a metamodel for the specification of safety compliance needs for critical systems. Method: The metamodel is holistic and generic, and abstracts common concepts for demonstrating safety compliance from different standards and application domains. Its application results in the specification of “reference assurance frameworks” for safety-critical systems, which correspond to a model of the safety criteria of a given standard. For validating the metamodel with safety standards, parts of several standards have been modelled by both academic and industry personnel, and other standards have been analysed. We further augment this with feedback from practitioners, including feedback during a workshop. Results: The results from the validation show that the metamodel can be used to specify safety compliance needs for aerospace, automotive, avionics, defence, healthcare, machinery, maritime, oil and gas, process industry, railway, and robotics. Practitioners consider that the metamodel can meet their needs and find benefits in its use. Conclusion: The metamodel supports the specification of safety compliance needs for most critical computer-based and software-intensive systems. The resulting models can provide an effective means of structuring and managing safety compliance information

    Certifications of Critical Systems – The CECRIS Experience

    Get PDF
    In recent years, a considerable amount of effort has been devoted, both in industry and academia, to the development, validation and verification of critical systems, i.e. those systems whose malfunctions or failures reach a critical level both in terms of risks to human life as well as having a large economic impact.Certifications of Critical Systems – The CECRIS Experience documents the main insights on Cost Effective Verification and Validation processes that were gained during work in the European Research Project CECRIS (acronym for Certification of Critical Systems). The objective of the research was to tackle the challenges of certification by focusing on those aspects that turn out to be more difficult/important for current and future critical systems industry: the effective use of methodologies, processes and tools.The CECRIS project took a step forward in the growing field of development, verification and validation and certification of critical systems. It focused on the more difficult/important aspects of critical system development, verification and validation and certification process. Starting from both the scientific and industrial state of the art methodologies for system development and the impact of their usage on the verification and validation and certification of critical systems, the project aimed at developing strategies and techniques supported by automatic or semi-automatic tools and methods for these activities, setting guidelines to support engineers during the planning of the verification and validation phases

    Quality-driven optimized resource allocation

    Get PDF
    The assurance of a good software product quality necessitates a managed software process. Periodic product evaluation (inspection and testing) should be executed during the development process in order to simultaneously guarantee the timeliness and quality aspects of the development workflow. A faithful prediction of the efforts needed forms the basis of a project management (PM) in order to perform a proper human resource allocation to the different development and QA activities. However, even robust resource demand and quality estimation tools, like COCOMO II and COQUALMO do not cover the timeliness point of view sufficiently due to their static nature. Correspondingly, continuous quality monitoring and quality driven supervisory control of the development process became vital aspects in PM. A well-established complementary approach uses the Weibull model to describe the dynamics of the development and QA process by a mathematical model based on the observations gained during the development process. Supervisory PM control has to concentrate development and QA resources to eliminate quality bottlenecks, as different parts (modules) of the product under development may reveal different defect density levels. Nevertheless, traditional heuristic quality management is unable to perform optimal resource allocation in the case of complex target programs. This paper presents a model-based quality-driven optimized resource allocation method. It combines the COQUALMO model as early quality predictor and empirical knowledge formulated by a Weibull model gained by the continuous monitoring of the QA process flow. An exact mathematical optimization technique is used for human resource, like tester allocation

    Semantic recovery of traceability links between system artifacts

    Get PDF
    This paper introduces a mechanism to recover traceability links between the requirements and logical models in the context of critical systems development. Currently, lifecycle processes are covered by a good number of tools that are used to generate different types of artifacts. One of the cornerstone capabilities in the development of critical systems lies in the possibility of automatically recovery traceability links between system artifacts generated in different lifecycle stages. To do so, it is necessary to establish to what extent two or more of these work products are similar, dependent or should be explicitly linked together. However, the different types of artifacts and their internal representation depict a major challenge to unify how system artifacts are represented and, then, linked together. That is why, in this work, a concept-based representation is introduced to provide a semantic and unified description of any system artifact. Furthermore, a traceability function is defined and implemented to exploit this new semantic representation and to support the recovery of traceability links between different types of system artifacts. In order to evaluate the traceability function, a case study in the railway domain is conducted to compare the precision and recall of recovery traceability links between text-based requirements and logical model elements. As the main outcome of this work, the use of a concept-based paradigm to represent that system artifacts are demonstrated as a building block to automatically recover traceability links within the development lifecycle of critical systems.The research leading to these results has received funding from the H2020 ECSEL Joint Undertaking (JU) under Grant Agreement No. 826452 \Arrowhead Tools for Engineering of Digitalisation Solutions" and from speciÂŻc national programs and/or funding authorities

    Certifications of Critical Systems – The CECRIS Experience

    Get PDF
    In recent years, a considerable amount of effort has been devoted, both in industry and academia, to the development, validation and verification of critical systems, i.e. those systems whose malfunctions or failures reach a critical level both in terms of risks to human life as well as having a large economic impact.Certifications of Critical Systems – The CECRIS Experience documents the main insights on Cost Effective Verification and Validation processes that were gained during work in the European Research Project CECRIS (acronym for Certification of Critical Systems). The objective of the research was to tackle the challenges of certification by focusing on those aspects that turn out to be more difficult/important for current and future critical systems industry: the effective use of methodologies, processes and tools.The CECRIS project took a step forward in the growing field of development, verification and validation and certification of critical systems. It focused on the more difficult/important aspects of critical system development, verification and validation and certification process. Starting from both the scientific and industrial state of the art methodologies for system development and the impact of their usage on the verification and validation and certification of critical systems, the project aimed at developing strategies and techniques supported by automatic or semi-automatic tools and methods for these activities, setting guidelines to support engineers during the planning of the verification and validation phases

    An analysis of safety evidence management with the Structured Assurance Case Metamodel

    Get PDF
    SACM (Structured Assurance Case Metamodel) it a standard for assurance case specification and exchange. It consists of an argumentation metamodel and an evidence metamodel for justifying that a system satisfies certain requirements. For assurance of safety-critical systems, SACM can be used to manage safety evidence and to specify safety cases. The standard is a promising initiative towards harmonizing and improving system assurance practices, but its suitability for safety evidence management needs to be further studied. To this end, this paper studies how SACM 1.1 supports this activity according to requirements from industry and from prior work. We have analysed the notion of evidence in SACM, its evidence lifecycle, the classes and associations of the evidence metamodel, and the link of this metamodel with the argumentation one. As a result, we have identified several improvement opportunities and extension possibilities in SACM

    Introducing the STAMP method in road tunnel safety assessment

    Get PDF
    After the tremendous accidents in European road tunnels over the past decade, many risk assessment methods have been proposed worldwide, most of them based on Quantitative Risk Assessment (QRA). Although QRAs are helpful to address physical aspects and facilities of tunnels, current approaches in the road tunnel field have limitations to model organizational aspects, software behavior and the adaptation of the tunnel system over time. This paper reviews the aforementioned limitations and highlights the need to enhance the safety assessment process of these critical infrastructures with a complementary approach that links the organizational factors to the operational and technical issues, analyze software behavior and models the dynamics of the tunnel system. To achieve this objective, this paper examines the scope for introducing a safety assessment method which is based on the systems thinking paradigm and draws upon the STAMP model. The method proposed is demonstrated through a case study of a tunnel ventilation system and the results show that it has the potential to identify scenarios that encompass both the technical system and the organizational structure. However, since the method does not provide quantitative estimations of risk, it is recommended to be used as a complementary approach to the traditional risk assessments rather than as an alternative. (C) 2012 Elsevier Ltd. All rights reserved

    SRAM-Based FPGA Systems for Safety-Critical Applications: A Survey on Design Standards and Proposed Methodologies

    Get PDF
    As the ASIC design cost becomes affordable only for very large-scale productions, the FPGA technology is currently becoming the leading technology for those applications that require a small-scale production. FPGAs can be considered as a technology crossing between hardware and software. Only a small-number of standards for the design of safety-critical systems give guidelines and recommendations that take the peculiarities of the FPGA technology into consideration. The main contribution of this paper is an overview of the existing design standards that regulate the design and verification of FPGA-based systems in safety-critical application fields. Moreover, the paper proposes a survey of significant published research proposals and existing industrial guidelines about the topic, and collects and reports about some lessons learned from industrial and research projects involving the use of FPGA devices
    • 

    corecore