1 research outputs found

    ๋ฆฌํŠฌ ์ด์˜จ ์ „์ง€ ์šฉ ๊ณ ์šฉ๋Ÿ‰ ์‹ค๋ฆฌ์ฝ˜๊ณ„ ์Œ๊ทน์˜ ๊ตฌ์กฐ์  ์ œ์–ด ๋ฐ ๊ณ„๋ฉด ๊ฐœ์„ ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2022. 8. ์˜ค๊ทœํ™˜.Lithium-ion batteries (LIBs) are widely used in energy-intensive portable devices such as smartphones, electric vehicles, notebooks, and other electronic devices owing to their high energy density, long cycle life, and low self-discharge rate. As the requirements for electric vehicles and large-scale renewable energy storage systems increase due to environmental concerns, extensive research and development is being conducted on high-capacity and high-efficiency LIBs. To this end, silicon is considered as the most promising material among the advanced materials being studied as an alternative to carbon-based anode materials. Silicon exhibits a high theoretical capacity of 3580 mAh/g and a low discharge voltage. Despite the high-capacity characteristics of silicon, its commercialization has been challenging due to its structurally large volume expansion (volume expansion rate โ‰ˆ 400%) that occurs during metal alloying with lithium. The change in volume during the charge and discharge process causes cracks on the surface of the electrode material, and continuous cracking leads to pulverization of the electrode surface. New interfaces formed during pulverization generate a solid electrolyte interface (SEI) by reaction with the electrolyte. This SEI layer is insulating and causes electrolyte depletion, resulting in a sharp decrease in the capacity during the charge-discharge cycle. The second chapter presents investigations on the effect of changes in the microstructure of silicon-based anodes on the electrochemical properties. A silicon-based alloy anode material was fabricated by mechanical alloying. As the milling time increased, the silicon crystal phase became nanosized, and significantly improved electrochemical properties were observed. However, the semiconducting ฮฒ-FeSi2 crystalline matrix produced by excessive milling not only reduces the capacity of silicon and lithium by mitigating the chemical reaction between them due to the lowered conductivity of the anode material, but also destroys the stable crystal structure of ฮฑ-FeSi2. Thus, it fails to mitigate the expansion of silicon, which results in the severe deterioration of the long-term lifespan characteristics of the silicon-based anode. While previous studies focused on the fabrication of the anode material with the optimal stable phase during mechanical alloying, this research provides new insights into the development of anode materials by examining the correlation between the changes in the physical properties and electrochemical properties due to powder deterioration caused by excessive milling. In the third chapter, I present a method to improve the surface of silicon anodes that goes beyond microstructural control. An Al2O3 coating layer was simply formed on the surface of the anode powder through a commercially used atomic deposition coating process. The silicon anode may be prevented from directly contacting an electrolyte, and volume expansion due to continuous charging and discharging may be suppressed, thereby improving the electrochemical properties. The relationship between the physical properties of the coating layer and the electrochemical performance will be discussed. Further, various methods of battery characterization will be presented by analyzing the change in the physical volume of the pouch cell itself during the cycle and the deterioration of the internal negative electrode plate.๋ฆฌํŠฌ ์ด์˜จ ๋ฐฐํ„ฐ๋ฆฌ(LIB)๋Š” ๋†’์€ ์—๋„ˆ์ง€๋ฐ€๋„, ์žฅ ์‚ฌ์ดํด ์ˆ˜๋ช… ๋ฐ ๋‚ฎ์€ ์ž์ฒด ๋ฐฉ์ „์œจ๋กœ ์ธํ•ด ์Šค๋งˆํŠธ ํฐ, ์ „๊ธฐ์ฐจ, ๋…ธํŠธ๋ถ ๋ฐ ๊ธฐํƒ€ ์ „์ž ์žฅ์น˜์™€ ๊ฐ™์€ ์—๋„ˆ์ง€ ์ง‘์•ฝ์ ์ธ ํœด๋Œ€์šฉ ๊ธฐ๊ธฐ์— ๋งŽ์ด ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ ํ™˜๊ฒฝ๋ฌธ์ œ๋กœ ์ธํ•œ ์ „๊ธฐ์ฐจ, ๋Œ€๊ทœ๋ชจ ์‹ ์žฌ์ƒ ์—๋„ˆ์ง€ ์ €์žฅ์‹œ์Šคํ…œ์˜ ์š”๊ตฌ์‚ฌํ•ญ์ด ๋†’์•„์ง์— ๋”ฐ๋ผ ๊ณ ์šฉ๋Ÿ‰, ๊ณ ํšจ์œจ์˜ LIB๊ฐ€ ๋งŽ์€ ์—ฐ๊ตฌ ๊ฐœ๋ฐœ์ด ์ด๋ค„์ง€๊ณ  ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด, ์นด๋ณธ ๊ณ„ ์Œ๊ทน ์†Œ์žฌ์˜ ๋Œ€์•ˆ์œผ๋กœ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋Š” ์ฒจ๋‹จ ์žฌ๋ฃŒ ์ค‘ ์‹ค๋ฆฌ์ฝ˜์€ ๊ฐ€์žฅ ์œ ๋งํ•œ ์žฌ๋ฃŒ๋กœ ๊ฐ„์ฃผ๋œ๋‹ค. ์‹ค๋ฆฌ์ฝ˜์€ 3580mAh/g์˜ ๋†’์€ ์ด๋ก ์šฉ๋Ÿ‰ ๋ฐ ๋‚ฎ์€ ๋ฐฉ์ „ ์ „์••์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์‹ค๋ฆฌ์ฝ˜์ด ๋†’์€ ์šฉ๋Ÿ‰ ํŠน์„ฑ์„ ๋ณด์ž„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ƒ์šฉํ™”๊ฐ€ ์–ด๋ ค์šด ์ด์œ ๋Š” ๊ธˆ์†์ด ๋ฆฌํŠฌ๊ณผ ํ•ฉ๊ธˆํ™” ํ•˜๋Š” ๊ณผ์ •์—์„œ ๊ตฌ์กฐ์ ์œผ๋กœ ํฐ ๋ถ€ํ”ผ ํŒฝ์ฐฝ(์•ฝ 400%์˜ ๋ถ€ํ”ผ ํŒฝ์ฐฝ๋ฅ )์ด ์ผ์–ด๋‚˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์ถฉ, ๋ฐฉ์ „์— ๋”ฐ๋ฅธ ๋ถ€ํ”ผ ๋ณ€ํ™”๋Š” ์ „๊ทน ํ™œ ๋ฌผ์งˆ ํ‘œ๋ฉด์— ๊ท ์—ด์„ ์ผ์œผํ‚ค๊ณ , ์ง€์†์ ์ธ ๊ท ์—ด์€ ์ „๊ทน ํ‘œ๋ฉด์˜ ๋ฏธ๋ถ„ํ™”๋ฅผ ๊ฐ€์ ธ์˜ค๊ฒŒ ๋œ๋‹ค. ๋ฏธ๋ถ„ํ™”๋กœ ์ธํ•œ ์ƒˆ๋กœ์šด ๊ณ„๋ฉด๋“ค์€ ์ „ํ•ด์•ก๊ณผ์˜ ๋ฐ˜์‘์œผ๋กœ SEI (Solid Electrolyte Interface)์„ ์ƒ์„ฑํ•˜๊ฒŒ ๋˜๋Š”๋ฐ ์ด๋Ÿฌํ•œ SEI layer์€ ์ ˆ์—ฐ ์„ฑ์งˆ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ , ์ „ํ•ด์•ก์˜ ๊ณ ๊ฐˆ์„ ์•ผ๊ธฐํ•˜์—ฌ cycle์˜ ์ถฉ ๋ฐฉ์ „ ๊ณผ์ • ์ค‘ ์šฉ๋Ÿ‰์ด ๊ธ‰๊ฒฉํ•˜๊ฒŒ ๊ฐํ‡ดํ•˜๋Š” ๋ฌธ์ œ์ ์ด ๋ฐœ์ƒํ•˜๊ฒŒ ๋œ๋‹ค. ์ด๋Š” ์ฐจ๋ก€๋กœ ๊ฐ ์‚ฌ์ดํด ํ›„์— ์šฉ๋Ÿ‰ ์†์‹ค์„ ์œ ๋ฐœํ•˜์—ฌ ์žฅ๊ธฐ์  ์‚ฌ์ดํด ์„ฑ๋Šฅ์„ ์ €ํ•˜์‹œํ‚จ๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณ ์šฉ๋Ÿ‰ ์‹ค๋ฆฌ์ฝ˜๊ณ„ ์Œ๊ทน์˜ ๊ตฌ์กฐ์  ์ œ์–ด ๋ฐ ๊ณ„๋ฉด ๊ฐœ์„ ์„ ํ†ตํ•ด ์œ„์—์„œ ์–ธ๊ธ‰ํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ๊ณตํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ์žฅ์€ ์‹ค๋ฆฌ์ฝ˜๊ณ„ ์Œ๊ทน์˜ ๋ฏธ์„ธ ๊ตฌ์กฐ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ „๊ธฐํ™”ํ•™์  ํŠน์„ฑ ๋ณ€ํ™” ๊ด€์ฐฐ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ๊ธฐ๊ณ„์  ํ•ฉ๊ธˆ ๊ณต์ •์„ ์‚ฌ์šฉํ•˜์—ฌ ์‹ค๋ฆฌ์ฝ˜ ๊ณ„ ํ•ฉ๊ธˆ ์Œ๊ทน์†Œ์žฌ๋ฅผ ์ œ์ž‘ํ•˜์˜€๊ณ , ๋ฐ€๋ง ์‹œ๊ฐ„์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์‹ค๋ฆฌ์ฝ˜ ๊ฒฐ์ •์ƒ์€ ๋‚˜๋…ธํ™” ๋˜๋ฉฐ, ์ „๊ธฐํ™”ํ•™์  ํŠน์„ฑ์ด ํฌ๊ฒŒ ํ–ฅ์ƒ๋จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ํ•˜์ง€๋งŒ, ๊ณผ๋„ํ•œ ๋ฐ€๋ง์œผ๋กœ ์ƒ์„ฑ๋œ ๋ฐ˜๋„์ฒด์„ฑ์˜ ฮฒ-FeSi2 ๊ฒฐ์ •์ƒ ๋งคํŠธ๋ฆญ์Šค๋Š” ์Œ๊ทน ์†Œ์žฌ์˜ ๋‚ฎ์•„์ง„ ์ „๋„๋„๋กœ ์ธํ•ด ์‹ค๋ฆฌ์ฝ˜๊ณผ ๋ฆฌํŠฌ์˜ ํ™”ํ•ฉ๋ฐ˜์‘์„ ์ €ํ•˜ํ•˜์—ฌ, ์šฉ๋Ÿ‰์„ ๊ฐ์†Œ์‹œํ‚ฌ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ฮฑ-FeSi2 ๊ฒฐ์ •์ƒ์˜ ์•ˆ์ •์ ์ธ ๊ตฌ์กฐ๋ฅผ ๋ฌด๋„ˆ๋œจ๋ ค ์‹ค๋ฆฌ์ฝ˜์˜ ํŒฝ์ฐฝ ๋ฌธ์ œ๋ฅผ ์™„์ถฉ์‹œ์ผœ ์ฃผ์ง€ ๋ชปํ•ด ์žฅ๊ธฐ ์ˆ˜๋ช… ํŠน์„ฑ์˜ ๊ธ‰๊ฒฉํ•œ ๊ฐ์†Œ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐ์‹œ์ผฐ๋‹ค. ์ข…๋ž˜์˜ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐ๊ณ„์  ํ•ฉ๊ธˆํ™” ๊ณต์ •์„ ์‚ฌ์šฉํ•˜์—ฌ ์ตœ์ ์˜ ์•ˆ์ •์ ์ธ ์ƒ์„ ๊ฐ€์ง„ ์Œ๊ทน ์†Œ์žฌ ์ƒ์‚ฐ์— ์ค‘์ ์„ ๋‘์—ˆ์ง€๋งŒ, ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณผ๋„ํ•œ ๋ฐ€๋ง์œผ๋กœ ์ธํ•œ ๋ถ„๋ง ์—ดํ™”์— ๋”ฐ๋ฅธ ๋ฌผ์„ฑ๊ณผ ์ „๊ธฐํ™”ํ•™์  ํŠน์„ฑ ๋ณ€ํ™”์˜ ์ƒ๊ด€ ๊ด€๊ณ„ ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด ์Œ๊ทน ์†Œ์žฌ ๊ฐœ๋ฐœ์— ์ƒˆ๋กœ์šด ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•œ๋‹ค. ์„ธ ๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ์‹ค๋ฆฌ์ฝ˜ ์Œ๊ทน์˜ ๋ฏธ์„ธ ๊ตฌ์กฐ ์กฐ์ ˆ์—์„œ ๋‚˜์•„๊ฐ€ ํ‘œ๋ฉด์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ƒ์—…์ ์œผ๋กœ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ์›์ž ์ฆ์ฐฉ ์ฝ”ํŒ… ๊ณต์ •์„ ํ†ตํ•ด ๊ฐ„๋‹จํ•˜๊ฒŒ ์Œ๊ทน ๋ถ„๋ง ํ‘œ๋ฉด์— Al2O3 ์ฝ”ํŒ…์ธต์„ ํ˜•์„ฑํ•˜์˜€๋‹ค. ์‹ค๋ฆฌ์ฝ˜ ์Œ๊ทน์ด ์ „ํ•ด์•ก๊ณผ ์ง์ ‘ ์ ‘์ด‰๋˜๋Š” ๊ฒƒ์„ ๋ฐฉ์ง€ํ•˜๋ฉฐ, ์—ฐ์†์ ์ธ ์ถฉ๋ฐฉ์ „์— ์˜ํ•œ ๋ถ€ํ”ผํŒฝ์ฐฝ์„ ์–ต์ œํ•˜์—ฌ ์ „๊ธฐํ™”ํ•™์  ์ˆ˜๋ช…์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ์ฝ”ํŒ…์ธต์˜ ๋ฌผ์„ฑ๊ณผ ์ „๊ธฐ ํ™”ํ•™์  ์„ฑ๋Šฅ์˜ ๊ด€๊ณ„์— ๋Œ€ํ•ด ๋…ผ์˜ํ•˜๊ณ , ์‚ฌ์ดํด์ด ์ง„ํ–‰ ์ค‘์ธ ํŒŒ์šฐ์น˜ ์…€ ์ž์ฒด์˜ ๋ฌผ๋ฆฌ์  ๋ถ€ํ”ผ ๋ณ€ํ™” ๋ฐ ๋‚ด๋ถ€ ์Œ๊ทน ๊ทนํŒ์˜ ์—ดํ™” ์ƒํƒœ์˜ ๊ด€์ฐฐ์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•์˜ ์ „์ง€ ํŠน์„ฑ ๋ถ„์„๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค.Chapter 1. Introduction 1 1.1. Background of Study 1 1.1.1. Research objectives 1 1.1.2. Mechanical alloying 3 1.1.3. Atomic layer deposition 4 1.2. Failure mechanism of silicon anode and outlines 5 1.3. Reference 8 Chapter 2. Structural Control of Si Nanocomposite anodes 12 2.1. Introduction 12 2.2. Experimental 15 2.2.1. Synthesis of FeSi Nanocomposite Materials 15 2.2.2. Material Characterization 18 2.2.3. Electrode Preparation 19 2.2.4. Electrode preparation of 80 wt% FeSi 20 2.2.5. Electrode preparation of 15 wt% FeSi 21 2.2.6. Cell Assembly 22 2.2.7. Electrochemical Investigations in Cell 23 2.3. Results and Discussion 25 2.3.1. Analysis of XRD Pattern 25 2.3.2. Cross section analysis 29 2.3.3. Resistance analysis 33 2.3.4. Electrochemical performance 35 2.4. Conclusion 46 2.5. Reference 48 Chapter 3. Interfacial improvement of Si Nanocomposite anodes 55 3.1. Introduction 55 3.2. Experimental Method 59 3.2.1. FeSi Nanocomposite Materials and Al2O3 ALD Procedure 59 3.2.2. Material Characterization 62 3.2.3. Electrode Preparation 63 3.2.4. Preparation of 80 wt.% FeSi Electrode for CHCs 64 3.2.5. Preparation of 15 wt.% FeSi Electrode for PFCs and an SLPCs 65 3.2.6. Cell Assembly 66 3.2.7 Electrochemical Investigations of the Cells 70 3.3. Results and Discussion 73 3.3.1. XRF and powder-particle size analyses 73 3.3.2. XRD patterns 76 3.3.3. BET and TEM-EDS analyses 79 3.3.4. Electrochemical Performance 86 3.4. Conclusion 103 3.5. Reference 105 Abstract in Korean 115๋ฐ•
    corecore