10,439 research outputs found

    Finitely additive extensions of distribution functions and moment sequences: The coherent lower prevision approach

    Get PDF
    We study the information that a distribution function provides about the finitely additive probability measure inducing it. We show that in general there is an infinite number of finitely additive probabilities associated with the same distribution function. Secondly, we investigate the relationship between a distribution function and its given sequence of moments. We provide formulae for the sets of distribution functions, and finitely additive probabilities, associated with some moment sequence, and determine under which conditions the moments determine the distribution function uniquely. We show that all these problems can be addressed efficiently using the theory of coherent lower previsions

    Abstract Interpretation of Supermodular Games

    Full text link
    Supermodular games find significant applications in a variety of models, especially in operations research and economic applications of noncooperative game theory, and feature pure strategy Nash equilibria characterized as fixed points of multivalued functions on complete lattices. Pure strategy Nash equilibria of supermodular games are here approximated by resorting to the theory of abstract interpretation, a well established and known framework used for designing static analyses of programming languages. This is obtained by extending the theory of abstract interpretation in order to handle approximations of multivalued functions and by providing some methods for abstracting supermodular games, in order to obtain approximate Nash equilibria which are shown to be correct within the abstract interpretation framework

    Invariant Generation through Strategy Iteration in Succinctly Represented Control Flow Graphs

    Full text link
    We consider the problem of computing numerical invariants of programs, for instance bounds on the values of numerical program variables. More specifically, we study the problem of performing static analysis by abstract interpretation using template linear constraint domains. Such invariants can be obtained by Kleene iterations that are, in order to guarantee termination, accelerated by widening operators. In many cases, however, applying this form of extrapolation leads to invariants that are weaker than the strongest inductive invariant that can be expressed within the abstract domain in use. Another well-known source of imprecision of traditional abstract interpretation techniques stems from their use of join operators at merge nodes in the control flow graph. The mentioned weaknesses may prevent these methods from proving safety properties. The technique we develop in this article addresses both of these issues: contrary to Kleene iterations accelerated by widening operators, it is guaranteed to yield the strongest inductive invariant that can be expressed within the template linear constraint domain in use. It also eschews join operators by distinguishing all paths of loop-free code segments. Formally speaking, our technique computes the least fixpoint within a given template linear constraint domain of a transition relation that is succinctly expressed as an existentially quantified linear real arithmetic formula. In contrast to previously published techniques that rely on quantifier elimination, our algorithm is proved to have optimal complexity: we prove that the decision problem associated with our fixpoint problem is in the second level of the polynomial-time hierarchy.Comment: 35 pages, conference version published at ESOP 2011, this version is a CoRR version of our submission to Logical Methods in Computer Scienc
    • …
    corecore