1,721 research outputs found

    Distributed Decision Through Self-Synchronizing Sensor Networks in the Presence of Propagation Delays and Asymmetric Channels

    Full text link
    In this paper we propose and analyze a distributed algorithm for achieving globally optimal decisions, either estimation or detection, through a self-synchronization mechanism among linearly coupled integrators initialized with local measurements. We model the interaction among the nodes as a directed graph with weights (possibly) dependent on the radio channels and we pose special attention to the effect of the propagation delay occurring in the exchange of data among sensors, as a function of the network geometry. We derive necessary and sufficient conditions for the proposed system to reach a consensus on globally optimal decision statistics. One of the major results proved in this work is that a consensus is reached with exponential convergence speed for any bounded delay condition if and only if the directed graph is quasi-strongly connected. We provide a closed form expression for the global consensus, showing that the effect of delays is, in general, the introduction of a bias in the final decision. Finally, we exploit our closed form expression to devise a double-step consensus mechanism able to provide an unbiased estimate with minimum extra complexity, without the need to know or estimate the channel parameters.Comment: To be published on IEEE Transactions on Signal Processin

    Delayed Dynamical Systems: Networks, Chimeras and Reservoir Computing

    Full text link
    We present a systematic approach to reveal the correspondence between time delay dynamics and networks of coupled oscillators. After early demonstrations of the usefulness of spatio-temporal representations of time-delay system dynamics, extensive research on optoelectronic feedback loops has revealed their immense potential for realizing complex system dynamics such as chimeras in rings of coupled oscillators and applications to reservoir computing. Delayed dynamical systems have been enriched in recent years through the application of digital signal processing techniques. Very recently, we have showed that one can significantly extend the capabilities and implement networks with arbitrary topologies through the use of field programmable gate arrays (FPGAs). This architecture allows the design of appropriate filters and multiple time delays which greatly extend the possibilities for exploring synchronization patterns in arbitrary topological networks. This has enabled us to explore complex dynamics on networks with nodes that can be perfectly identical, introduce parameter heterogeneities and multiple time delays, as well as change network topologies to control the formation and evolution of patterns of synchrony

    An Overview of Recent Progress in the Study of Distributed Multi-agent Coordination

    Get PDF
    This article reviews some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006. Distributed coordination of multiple vehicles, including unmanned aerial vehicles, unmanned ground vehicles and unmanned underwater vehicles, has been a very active research subject studied extensively by the systems and control community. The recent results in this area are categorized into several directions, such as consensus, formation control, optimization, task assignment, and estimation. After the review, a short discussion section is included to summarize the existing research and to propose several promising research directions along with some open problems that are deemed important for further investigations
    • …
    corecore