108 research outputs found

    Fault-tolerant consensus of nonlinear agents considering switching topology in the presence of communication noise

    Get PDF
    In this paper, the consensus of nonlinear multi-agent systems (MASs) is discussed, considering actuator fault and switching topology in the presence of communication noise. The actuator fault and communication noise are both considered to be random. The switching of the topologies is considered random as well. These issues are handled by Distributed Nonlinear Dynamic Inversion (DNDI), which is designed for Multi-Agent Systems (MASs) operation. The convergence proof with actuator fault is provided, which shows the robustness of the controller. The simulation results show that DNDI successfully dealt with the actuator fault and communication events simultaneously

    Cooperative Control Reconfiguration in Networked Multi-Agent Systems

    Get PDF
    Development of a network of autonomous cooperating vehicles has attracted significant attention during the past few years due to its broad range of applications in areas such as autonomous underwater vehicles for exploring deep sea oceans, satellite formations for space missions, and mobile robots in industrial sites where human involvement is impossible or restricted, to name a few. Motivated by the stringent specifications and requirements for depth, speed, position or attitude of the team and the possibility of having unexpected actuators and sensors faults in missions for these vehicles have led to the proposed research in this thesis on cooperative fault-tolerant control design of autonomous networked vehicles. First, a multi-agent system under a fixed and undirected network topology and subject to actuator faults is studied. A reconfigurable control law is proposed and the so-called distributed Hamilton-Jacobi-Bellman equations for the faulty agents are derived. Then, the reconfigured controller gains are designed by solving these equations subject to the faulty agent dynamics as well as the network structural constraints to ensure that the agents can reach a consensus even in presence of a fault while simultaneously the team performance index is minimized. Next, a multi-agent network subject to simultaneous as well as subsequent actuator faults and under directed fixed topology and subject to bounded energy disturbances is considered. An H∞ performance fault recovery control strategy is proposed that guarantees: the state consensus errors remain bounded, the output of the faulty system behaves exactly the same as that of the healthy system, and the specified H∞ performance bound is guaranteed to be minimized. Towards this end, the reconfigured control law gains are selected first by employing a geometric control approach where a set of controllers guarantees that the output of the faulty agent imitates that of the healthy agent and the consensus achievement objectives are satisfied. Then, the remaining degrees of freedom in the selection of the control law gains are used to minimize the bound on a specified H∞ performance index. Then, control reconfiguration problem in a team subject to directed switching topology networks as well as actuator faults and their severity estimation uncertainties is considered. The consensus achievement of the faulty network is transformed into two stability problems, in which one can be solved offline while the other should be solved online and by utilizing information that each agent has received from the fault detection and identification module. Using quadratic and convex hull Lyapunov functions the control gains are designed and selected such that the team consensus achievement is guaranteed while the upper bound of the team cost performance index is minimized. Finally, a team of non-identical agents subject to actuator faults is considered. A distributed output feedback control strategy is proposed which guarantees that agents outputs’ follow the outputs of the exo-system and the agents states remains stable even when agents are subject to different actuator faults

    Distributed adaptive fault-tolerant leader-following formation control of nonlinear uncertain second-order multi-agent systems

    Get PDF
    This paper presents a distributed integrated fault diagnosis and accommodation scheme for leader‐following formation control of a class of nonlinear uncertain second‐order multi‐agent systems. The fault model under consideration includes both process and actuator faults, which may evolve abruptly or incipiently. The time‐varying leader communicates with a small subset of follower agents, and each follower agent communicates to its directly connected neighbors through a bidirectional network with possibly asymmetric weights. A local fault diagnosis and accommodation component are designed for each agent in the distributed system, which consists of a fault detection and isolation module and a reconfigurable controller module comprised of a baseline controller and two adaptive fault‐tolerant controllers, activated after fault detection and after fault isolation, respectively. By using appropriately the designed Lyapunov functions, the closed‐loop stability and asymptotic convergence properties of the leader‐follower formation are rigorously established under different modes of the fault‐tolerant control system

    Distributed Fault-Tolerant Consensus Tracking Control of Multi-Agent Systems under Fixed and Switching Topologies

    Get PDF
    This paper proposes a novel distributed fault-tolerant consensus tracking control design for multi-agent systems with abrupt and incipient actuator faults under fixed and switching topologies. The fault and state information of each individual agent is estimated by merging unknown input observer in the decentralized fault estimation hierarchy. Then, two kinds of distributed fault-tolerant consensus tracking control schemes with average dwelling time technique are developed to guarantee the mean-square exponential consensus convergence of multi-agent systems, respectively, on the basis of the relative neighboring output information as well as the estimated information in fault estimation. Simulation results demonstrate the effectiveness of the proposed fault-tolerant consensus tracking control algorithm

    Cooperative Control of Nonlinear Multi-Agent Systems

    Get PDF
    Multi-agent systems have attracted great interest due to their potential applications in a variety of areas. In this dissertation, a nonlinear consensus algorithm is developed for networked Euler-Lagrange multi-agent systems. The proposed consensus algorithm guarantees that all agents can reach a common state in the workspace. Meanwhile, the external disturbances and structural uncertainties are fundamentally considered in the controller design. The robustness of the proposed consensus algorithm is then demonstrated in the stability analysis. Furthermore, experiments are conducted to validate the effectiveness of the proposed consensus algorithm. Next, a distributed leader-follower formation tracking controller is developed for networked nonlinear multi-agent systems. The dynamics of each agent are modeled by Euler-Lagrange equations, and all agents are guaranteed to track a desired time-varying trajectory in the presence of noise. The fault diagnosis strategy of the nonlinear multi-agent system is also investigated with the help of differential geometry tools. The effectiveness of the proposed controller is verified through simulations. To further extend the application area of the multi-agent technique, a distributed robust controller is then developed for networked Lipschitz nonlinear multi-agent systems. With the appearance of system uncertainties and external disturbances, a sampled-data feedback control protocol is carried out through the Lyapunov functional approach. The effectiveness of the proposed controller is verified by numerical simulations. Other than the robustness and sampled-data information exchange, this dissertation is also concerned with the event-triggered consensus problem for the Lipschitz nonlinear multi-agent systems. Furthermore, the sufficient condition for the stochastic stabilization of the networked control system is proposed based on the Lyapunov functional method. Finally, simulation is conducted to demonstrate the effectiveness of the proposed control algorithm. In this dissertation, the cooperative control of networked Euler-Lagrange systems and networked Lipschitz systems is investigated essentially with the assistance of nonlinear control theory and diverse controller design techniques. The main objective of this work is to propose realizable control algorithms for nonlinear multi-agent systems

    Fault Detection and Isolation in Controlled Multi-Robot Systems

    Get PDF
    Multi-Agent Systems (MASs) have attracted much popularity, since the previous decade due to their potential wide range of applications. Indeed, connected MASs are deployed in order to achieve more complex objectives that could otherwise not be achievable by a single agent. In distributed schemes, agents must share their information with their neighbours, which are then used for common control and fault detection purposes, and thus do not require any central monitoring unit. This translates into the necessity to develop efficient distributed algorithms in terms of robustness and safety. Indeed, the problem of safety in connected cooperative MASs has arisen as a consequence of their complexity and the nature of their operations and wireless communication exchanges, which renders them vulnerable to not only physical faults, but also to cyber-attacks. The main focus of this thesis is the study of distributed fault and attack detection and isolation in connected MASs. First, a distributed methodology for global detection of actuator faults in a class of linear MASs with unknown disturbances is proposed using a cascade of fixed-time Sliding Mode Observers (SMOs), where each agent having access to their state, and neighbouring information exchanges, can give an exact estimate of the state of the overall MAS. An LMI-based approach is then applied to design distributed global robust residual signals at each agent capable of detecting faults anywhere in the network. This is then extended to agents with nonlinear nonholonomic dynamics where a new distributed robust Fault Detection and Isolation (FDI) scheme is proposed using predefined-time stability techniques to derive adequate distributed SMOs. This enables to reconstruct the global system state in a predefined-time and generate proper residual signals. The case of MASs with higher order integrator dynamics, where only the first state variable is measurable and the topology is switching is investigated, where a new approach to identify faults and deception attacks is introduced. The proposed protocol makes an agent act as a central node monitoring the whole system activities in a distributed fashion whereby a bank of distributed predefined-time SMOs for global state estimation are designed, which are then used to generate residual signals capable of identifying cyber-attacks despite the switching topology. The problem of attack and FDI in connected heterogeneous MASs with directed graphs, is then studied. First, the problem of distributed fault detection for a team of heterogeneous MASs with linear dynamics is investigated, where a new output observer scheme is proposed which is effective for both directed and undirected topologies. The main advantage of this approach is that the design, being dependant only on the input-output relations, renders the computational cost, information exchange and scalability very effective compared to other FDI approaches that employ the whole state estimation of the agents and their neighbours as a basis for their design. A more general model is then studied, where actuator, sensor and communication faults/attacks are considered in the robust detection and isolation process for nonlinear heterogeneous MASs with measurement noise, dynamic disturbances and communication parameter uncertainties, where the topology is not required to be undirected. This is done using a distributed finite-frequency mixed H_/H1 nonlinear UIO-based approach. Simulation examples are given for each of the proposed algorithms to show their effectiveness and robustness

    Distributed Adaptive Control for a Class of Heterogeneous Nonlinear Multi-Agent Systems with Nonidentical Dimensions

    Get PDF
    A novel feedback distributed adaptive control strategy based on radial basis neural network (RBFNN) is proposed for the consensus control of a class of leaderless heterogeneous nonlinear multi-agent systems with the same and different dimensions. The distributed control, which consists of a sequence of comparable matrices or vectors, can make that all the states of each agent to attain consensus dynamic behaviors are defined with similar parameters of each agent with nonidentical dimensions. The coupling weight adaptation laws and the feedback management of neural network weights ensure that all signals in the closed-loop system are uniformly ultimately bounded. Finally, two simulation examples are carried out to validate the effectiveness of the suggested control design strategy

    Bipartite consensus of nonlinear agents in the presence of communication noise

    Get PDF
    In this paper, a Distributed Nonlinear Dynamic Inversion (DNDI)-based consensus protocol is designed to achieve the bipartite consensus of nonlinear agents over a signed graph. DNDI inherits the advantage of nonlinear dynamic inversion theory, and the application to the bipartite problem is a new idea. Moreover, communication noise is considered to make the scenario more realistic. The convergence study provides a solid theoretical base, and a realistic simulation study shows the effectiveness of the proposed protocol.Engineering and Physical Sciences Research Council (EPSRC): EP/R009953/
    • 

    corecore