20,402 research outputs found

    Optimal impact angle guidance for exo-atmospheric interception utilizing gravitational effect

    Get PDF
    This paper aims to develop a new optimal intercept angle guidance law for exo-atmospheric interception by utilizing gravity. A finite-time optimal regulation problem is formulated by considering the instantaneous zero-effort-miss (ZEM) and the intercept angle error as the system states. The analytical guidance command is then derived based on Schwarz's inequality approach and Lagrange multiplier concept. Capturability analysis using instantaneous linear time-invariant system concept is also presented to provide better insights of the proposed guidance law. Theoretical analysis reveals that the proposed optimal guidance law encompasses previously suggested optimal impact angle constrained guidance laws. Numerical simulations with some comparisons clearly demonstrate the effectiveness of the proposed guidance law

    Smooth Adaptive Finite Time Guidance Law with Impact Angle Constraints

    Get PDF
    A smooth guidance law for intercepting a maneuvering target with impact angle constraints is documented based on the nonsingular fast terminal sliding mode control scheme and adaptive control scheme. Different from the traditional adaptive law which is used to estimate the unknown upper bound of the target acceleration, a new adaptive law is proposed to estimate the square of target acceleration bound, which avoids the use of the nonsmooth signum function and therefore ensures the smoothness of the guidance law. The finite time convergence of the guidance system is guaranteed based on the Lyapunov method and the finite time theory. Simulation results indicate that under the proposed guidance law the missile can intercept the target with a better accuracy at a desired impact angle in a shorter time with a completely smooth guidance command compared with the existing adaptive fast terminal sliding mode guidance laws, which shows the superiority of this method

    Proportional-Integral-Derivative Controller in Proportional Navigation Guidance

    Get PDF
    In this thesis, a Proportional-Integral-Derivative (PID) guidance scheme is discussed to improve the miss distance accuracy and the finite time stability problem in the Proportional Navigation Guidance (PNG). The primary goal of this study is to design the PID guidance that can accurately intercept the fast maneuvering target. The PID guidance is the extended version of the PNG with the integral and derivative terms in parallel. For the understanding of the conventional PNG model, the two-dimensional (2-D) engagement model of the missile and target is analyzed. Two characteristics are found in the PNG model: (1) its’ stability is kept in the finite time but becomes unstable at the vicinity of the interception and (2) the Line-of-sight angle rate (LOSR) increases as the target acceleration magnitude increases. To regulate the LOSR, the PID guidance is derived based on the servomechanism theory. The PID guidance model replaces the proportional gain of the conventional PNG model by the PID controller. A PID controller design using the numerical method through the iterative simulation is presented. For the various missile and target initial geometries, the capture region of the PID guidance is evaluated and compared with the conventional PNG model. In the end, the PID guidance model shows the improved miss distance accuracy, the extended stable time, and extended capture region when compared with the PNG model

    Advanced Centaur explicit guidance equation study Final report

    Get PDF
    Generalized equations and in-flight computer requirements for Centaur guidance and control and advanced mission plannin

    An on-board near-optimal climb-dash energy management

    Get PDF
    On-board real time flight control is studied in order to develop algorithms which are simple enough to be used in practice, for a variety of missions involving three dimensional flight. The intercept mission in symmetric flight is emphasized. Extensive computation is required on the ground prior to the mission but the ensuing on-board exploitation is extremely simple. The scheme takes advantage of the boundary layer structure common in singular perturbations, arising with the multiple time scales appropriate to aircraft dynamics. Energy modelling of aircraft is used as the starting point for the analysis. In the symmetric case, a nominal path is generated which fairs into the dash or cruise state. Feedback coefficients are found as functions of the remaining energy to go (dash energy less current energy) along the nominal path

    Analytical design and simulation evaluation of an approach flight director system for a jet STOL aircraft

    Get PDF
    A program was undertaken to develop design criteria and operational procedures for STOL transport aircraft. As part of that program, a series of flight tests shall be performed in an Augmentor Wing Jet STOL Aircraft. In preparation for the flight test programs, an analytical study was conducted to gain an understanding of the characteristics of the vehicle for manual control, to assess the relative merits of the variety of manual control techniques available with attitude and thrust vector controllers, and to determine what improvements can be made over manual control of the bare airframe by providing the pilot with suitable command guidance information and by augmentation of the bare airframe dynamics. The objective of the study is to apply closed-loop pilot/vehicle analysis techniques to the analysis of manual flight control of powered-lift STOL aircraft in the landing approach and to the design and experimental verification of an advanced flight director display

    Numerical Integration and Dynamic Discretization in Heuristic Search Planning over Hybrid Domains

    Full text link
    In this paper we look into the problem of planning over hybrid domains, where change can be both discrete and instantaneous, or continuous over time. In addition, it is required that each state on the trajectory induced by the execution of plans complies with a given set of global constraints. We approach the computation of plans for such domains as the problem of searching over a deterministic state model. In this model, some of the successor states are obtained by solving numerically the so-called initial value problem over a set of ordinary differential equations (ODE) given by the current plan prefix. These equations hold over time intervals whose duration is determined dynamically, according to whether zero crossing events take place for a set of invariant conditions. The resulting planner, FS+, incorporates these features together with effective heuristic guidance. FS+ does not impose any of the syntactic restrictions on process effects often found on the existing literature on Hybrid Planning. A key concept of our approach is that a clear separation is struck between planning and simulation time steps. The former is the time allowed to observe the evolution of a given dynamical system before committing to a future course of action, whilst the later is part of the model of the environment. FS+ is shown to be a robust planner over a diverse set of hybrid domains, taken from the existing literature on hybrid planning and systems.Comment: 17 page
    • …
    corecore